PROGRAM

43rd ANNUAL AAS GUIDANCE, NAVIGATION & CONTROL CONFERENCE

January 30th to February 5th, 2020
NINJA Room B
km to:
HALL PATIO
GM CONCIERGE
1.6 GINTER
CLASSIFIED SESSION
Classified Advances in GN&C and Classified Recent Experiences

THURSDAY JANUARY 30TH
Registration and Breakfast
8:00-9:00 AM

FRIDAY JANUARY 31ST
Registration and Breakfast
8:00-8:30 AM

Pre-registration by Jan 18, 2020 is required and will be controlled (walk-ins will NOT be admitted). Attendees must register for the entire AAS conference to be eligible to attend classified sessions. Contact a local chairperson for more information.

Location of Classified Session:
Aerospace Corporation
Colorado Springs Conference Facility
Colorado Springs, CO
Traditional Conference Location

BEAVER RUN
CONERENCE CENTER
Breckenridge, Colorado

Room check-in at the Beaver Run Resort front desk 4:00 PM daily

Conference Registration

Friday 5:00 to 8:00 PM
Daily 6:30 to 10:00 AM and 4:00 to 6:00 PM

Registration Questions

Michelle Barath 303-887-7724
Amy Delay 303-731-9876

43rd Annual AAS Guidance, Navigation & Control Conference Chairperson

Jastesh Sud
Lockheed Martin Space
303-919-8453
jastesh.sud@lmco.com

Wi-Fi Access

Select “Beaver Run Meeting” wireless network.
Open a browser window
Enter voucher code: AAS2020

Conference Website

https://aas-rocky-mountain-section.org/

Pre-print Paper Access (read-only)

https://tinyurl.com/aasgnc2020
<table>
<thead>
<tr>
<th>Day</th>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thursday January 30th</td>
<td>8 – 9 AM</td>
<td>Badging and Breakfast</td>
</tr>
<tr>
<td></td>
<td>9 AM – 4:30 PM</td>
<td>Classified Session</td>
</tr>
<tr>
<td>Friday January 31st</td>
<td>8 – 8:30 AM</td>
<td>Badging and Breakfast</td>
</tr>
<tr>
<td></td>
<td>9 AM – 4:30 PM</td>
<td>Classified Session</td>
</tr>
<tr>
<td></td>
<td>5 – 8 PM</td>
<td>Conference Registration</td>
</tr>
<tr>
<td></td>
<td>6 – 9 PM</td>
<td>Welcome Reception</td>
</tr>
<tr>
<td>Saturday February 1st</td>
<td>6:15 AM – 7:00 AM</td>
<td>Breakfast</td>
</tr>
<tr>
<td></td>
<td>7 – 10 AM</td>
<td>Morning Sessions</td>
</tr>
<tr>
<td></td>
<td>10:30 AM – 4:00 PM</td>
<td>AAS STEM SCAPE</td>
</tr>
<tr>
<td></td>
<td>4 – 5 PM</td>
<td>NASA Astronaut for Children</td>
</tr>
<tr>
<td></td>
<td>5 – 7 PM</td>
<td>Technical Exhibits</td>
</tr>
<tr>
<td>Sunday February 2nd</td>
<td>6:15 AM – 7:00 AM</td>
<td>Breakfast</td>
</tr>
<tr>
<td></td>
<td>7 – 10:30 AM</td>
<td>Morning Sessions</td>
</tr>
<tr>
<td></td>
<td>8:30 – 9:00 AM</td>
<td>Poster Session Break</td>
</tr>
<tr>
<td></td>
<td>1:30 – 4 PM</td>
<td>Afternoon Session</td>
</tr>
<tr>
<td></td>
<td>4:15 PM</td>
<td>Super Bowl in Imperial Ballroom</td>
</tr>
<tr>
<td>Monday February 3rd</td>
<td>6:15 AM – 7:00 AM</td>
<td>Breakfast</td>
</tr>
<tr>
<td></td>
<td>7 – 10 AM</td>
<td>Morning Sessions</td>
</tr>
<tr>
<td></td>
<td>4 – 6 PM</td>
<td>Afternoon Sessions</td>
</tr>
<tr>
<td></td>
<td>6:30 – 7:30 PM</td>
<td>Networking & Career Event</td>
</tr>
<tr>
<td>Tuesday February 4th</td>
<td>6:15 AM – 7:00 AM</td>
<td>Breakfast</td>
</tr>
<tr>
<td></td>
<td>7 – 10 AM</td>
<td>Morning Sessions</td>
</tr>
<tr>
<td></td>
<td>12:30 – 3:30 PM</td>
<td>Workshop/Tutorial</td>
</tr>
<tr>
<td></td>
<td>4 – 7 PM</td>
<td>Afternoon Sessions</td>
</tr>
<tr>
<td>Wednesday February 5th</td>
<td>6:15 AM – 7:00 AM</td>
<td>Breakfast</td>
</tr>
<tr>
<td></td>
<td>7 – 10:00 AM</td>
<td>Morning Session</td>
</tr>
</tbody>
</table>
Session I Saturday 7:00-10:00 AM

STUDENT INNOVATIONS IN GN&C
This session embraces the wealth of research and innovative projects related to spacecraft GN&C being accomplished in the university setting. Papers in this session address hardware/software research as well as component, system or simulation advances. Papers submitted must have a student as the primary author and presenter. Papers will be adjudicated based on level of innovation, complexity of problem solved, perceived technical readiness level, applicability and field-ability to near-term systems, clarity of written and verbal delivery, number of completed years of schooling and adherence to delivery schedule. The session will be limited to 8 papers with the top 3 papers receiving monetary awards.

National Chairpersons
Luke Sauter, USAF
luke.sauter@usafa.edu
David Geller, Utah State University
david.geller@usu.edu

Local Chairpersons
Ian Gravseth, Ball Aerospace
jgrayset@ball.com
Heidi Hallowell, Ball Aerospace
hhallowe@ball.com

20-011 Autonomous Guidance for Robust Achievement of Science Observations around Small Bodies
Kenshiro Oguri, Jay McMahon
(University of Colorado at Boulder)
20-012 Root Locus Analysis of the Ground-to-Space Geolocation Problem
Christopher Ertl, Steven Beseler, and John Christian (Rensselaer Polytechnic Institute)

20-013 Withdrawn

20-014 L1-Moon Transfers to Polar Quasi-Frozen Orbits Using Invariant Manifolds
Sandeep Singh (Texas A&M University), Robyn Woollands (JPL-CalTech), Ehsan Taheri (University of Auburn)

20-015 Hybrid Strategy for Fuel-Optimal Trajectory Optimization using Solar Electric Propulsion and Hyperbolic Tangent Smoothing
Vishala Arya (Texas A&M University), Ehsan Taheri (University of Auburn), Robyn Woollands (JPL-CalTech), John L Junkins (Texas A&M University)

20-016 The Design of a Space-based Observation and Tracking System for Interstellar Objects
Ravi Nallapu, Jekan Thangavelautham (University of Arizona – SpaceTREx Laboratory)

20-017 Investigation of Prandtl-Ishlinskii Hysteresis Compensation for Deep Space Optical Communications Pointing Control
Lindsey Marinello (Johns Hopkins University – APL), John Y. Liu (JPL-CalTech)
AAS STEM-SCAPE Event
Saturday 10:30 AM-4:00 PM

In 2020, we will be hosting an annual STEM event for 100 high school students of diverse background from across the Denver metropolitan area. The event, called AAS STEM-SCAPE for “Student Career Arcs to Professional Engineers,” will trace the elements of a successful career journey in aerospace including High School and University education, initial employment and ultimately a rewarding profession. The keynote speaker will be followed by a STEM career panel. The event concludes with a short design project that will be co-led with student volunteers from the University of Colorado.

Michael Drews, Lockheed Martin Space
michael.e.drews@lmco.com
Meredith Stephens, Ball Aerospace
mlstephe@ball.com

Special Event for Children of Conference Attendees at 4 PM
Imperial Ballroom
NASA Astronaut, Janet Kavandi

This presentation will inspire our next generation of engineers by offering kids the opportunity to interact with an astronaut who flew three STS missions!
TECHNICAL EXHIBITS
Saturday 5:00 PM – 7:00 PM

The Technical Exhibits Session is a unique opportunity to observe displays and demonstrations of state-of-the-art hardware, design and analysis tools, and services applicable to advancement of guidance, navigation, and control technology. The latest commercial tools for GN&C simulations, analysis, and graphical displays are demonstrated in a hands-on, interactive environment, including lessons learned and undocumented features. Come enjoy excellent complimentary hors d’oeuvres and interact with the technical representatives and authors. This session takes place in a social setting and family members are welcome!

Local Chairpersons
Graeme Ramsey, Lockheed Martin Space
graeme.d.rams@lmco.com
Andrew Riskus, Ball Aerospace
ariskus@ball.com

Exhibitors:
Advanced Space
Airbus
Amazon Project Kuiper
AGI
Astrofein
Ball Aerospace
Blue Canyon
Cayuga
Innalabs ltd
Jena Optronik
Lockheed Martin
MathWorks
Moog
Northrop Grumman
Sierra Nevada Corp
Sodern
STEM
Utah State – SDL
In recent years, small satellites including NanoSats and CubeSats have seen greater use for a range of applications in government, commercial, and educational sectors. At the high end of this mass range, ESPA-class spacecraft are now trusted platforms for scientific and defense missions. These missions require advanced technology insertion (GN&C, on-board processing) while advancing manufacturing practices to achieve higher production rates. Some key challenges related to increasing production volume include: supply-chain management, automated production and testing, and design for manufacturing approaches. This session is open to papers covering advanced technology insertion on small sats (e.g. propulsion, optical communications, proximity operations, drag sails, etc) and advanced manufacturing practices (e.g. best practices for satellite production, automation and design for manufacturing). Papers on practical mission experience in these areas are welcomed.

National Chairpersons
Scott Palo, University of Colorado at Boulder palo@colorado.edu
Ivan Bertaska, NASA Marshall Space Center ivan.r.bertaska@nasa.gov

Local Chairpersons
Ellis King, Lockheed Martin Space ellis.king@lmco.com
Jeffrey Parker, Advanced Space parker@advanced-space.com

20-021 Passive Roll Stabilization of the Near-Earth Asteroid Scout Solar Sail Mission
Ivan Bertaska, Andrew Heaton, Juan Orphee (NASA/MSFC), Benjamin Diedrich (Dynamics Concepts, Inc)

20-022 Withdrawn

20-023 Advancing Asteroid Spacecraft GNC Technology Using Student Built CubeSat Centrifuge Laboratories
Jekan Thangavelautham, Erik Asphaug (University of Arizona – SpaceTREx Laboratory)

20-024 Decentralized Spacecraft Swarms for Inspection of Large Space Structures
Byong Kwon, Jekan Thangavelautham (University of Arizona – SpaceTREx Laboratory)

20-025 Mobility, Power and Thermal Control of SphereX for Planetary Exploration
Himangshu Kalita, Jekan Thangavelautham (University of Arizona – SpaceTREx Laboratory)

20-026 GNC of Shape Morphing Microbots for Planetary Exploration
Rachel Moses, Himangshu Kalita, Jekan Thangavelautham (University of Arizona – SpaceTREx Laboratory)

20-027 A Multiplicative Extended Kalman Filter for Low Earth Attitude Estimation Using a Radically Inexpensive MEMs IMU in a 0.5U Cubesat
Omar Awad, Robert Bishop
(University of South Florida)

20-028 **Design and Performance of Open Source Star Tracker on Commercial Off-the-Shelf Cameras and Computers**
Sam Pedrotty, Ronney Lovelace
(NASA/JSC), John Christian, Devin Renshaw, Grace Quintero
(Rensselaer Polytechnic Institute)

Session III Sunday 7:00-10:30 AM
ADVANCES IN HARDWARE

Many programs depend on heritage, but the future is advanced by those willing to design and implement new and novel architectures, technologies, and algorithms to solve GN&C problems. This session is open to papers with topics ranging from theoretical formulations to innovative systems and intelligent sensors that will advance the state of the art, reduce the cost of applications, and speed the convergence to hardware, numerical, or design trade solutions.

National Chairpersons

Steeve Kowalschek, European Space Agency - Agence Spatiale Européenne
steeve.kowalschek@esa.int
Scott Cryan, NASA Johnson Space Center
scott.p.cryan@nasa.gov

Local Chairpersons

Vasili Kamsioras, Ball Aerospace
vkmatsio@ball.com
Jim Russell, Lockheed Martin Space
james.f.russell@lmco.com
Mathew Sandnas, Ball Aerospace
msandnas@ball.com
20-031 RVS®3000-3D LIDAR – Gateway Rendezvous and Lunar Landing
Christoph Schmitt, Sebastian Dochow, Michael Windmüller, Johannes Both, (Jena-Optronik GmbH), Olivier Mongrard (European Space Agency)

20-032 The Magnetically Clean Reaction Wheel: Is Active Magnetic Field Compensation a Feasible Solution?
Anja Nicolai, Stephan Stoltz, Dr. Sebastian Scheiding (Astro-und Feinwerkenchnik Adlershof GmbH), O. Hillenmaier, J. Ludwig, C. Strauch (Magson GmbH)

20-033 GPS Navigation from Geo-Transfer to Geosynchronous Orbit: A New Receiver for Efficient Electric Orbit Raising
Yu Nakajima, Toru Yamamoto (JAXA), Ryo Harada, Satoko Kawakami, Susumu Kumagai (NEC Space Technologies Ltd.)

20-034 ASTRO XP - First Test Results
Uwe Schmidt, Jörg Reichert, Paul Petrucl, Richard Wuerl (Jena-Optronik GmbH)

20-035 Preliminary Test Results from Arietis, a High to Medium Performance, Hi-Rel, Radiation Hardened Gyro
Alberto Torasso, Jose Beitiia (InnaLabs Ltd), Steeve Kowaltschek (European Space Agency - ESTEC)
20-036 A Low-Cost Radiation-Hardened ASIC for CV Gyroscope Control
Peter Bond, Jeremy D. Popp and Anthony D. Challoner
(IntertialWave)

20-037 Auriga Star Tracker - Flight Heritage on Inaugural Airbus OneWeb Satellites Constellation
Damien Piot, Benoit Gelin, Marc Maksimous (Sodern), Audrey Lieutaud (Airbus OneWeb Satellites), Bruno Vignon (Airbus OneWeb Satellites)

20-038 On-Orbit Self-Calibration of Inertial Instruments
A.D. Meyer, J. Campanile, A.A. Trusov, G.H. Mccammon
(Northrop Grumman Systems Corporation)

Session IV Sunday 7:00-10:30 AM
HUMAN SPACEFLIGHT/DEEP SPACE GATEWAY
NASA and its commercial and international partners strive to bring astronauts to new Lunar, asteroid and Martian destinations, increasingly new and innovative GN&C technologies will be required to transport and deliver crews and return them safely to the Earth. There is an increased urgency with Vice President Pence's call to "return American astronauts to the moon within the next five years". As Orion and Space Launch System (SLS) programs approach their final stages of development, new systems such as the Deep Space Gateway and Lunar Landers are being developed as the next steps to reach Mars in the coming decades. This session explores key advancements in automation, guidance, navigation and Fault Detection/Isolation (FDI)
technologies which will ultimately enable human exploration onto lunar bases and beyond.

National Chairpersons
Tim Straube, NASA Johnson Space Center
timothy.m.straube@nasa.gov
Howard Hu, NASA Johnson Space Center
howard.c.hu@nasa.gov
Diane Davis, NASA Johnson Space Center
diane.c.davis@nasa.gov

Local Chairperson
Harvey Mamich, Lockheed Martin Space
harvey.r.mamich@lmco.com

<table>
<thead>
<tr>
<th>Paper Number</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-041</td>
<td>Analysis of Cislunar autonomous Navigation with StarNAV and OpNAV</td>
<td>John A. Christian (RPI) and Christopher N. D’Souza (NASA/JSC)</td>
</tr>
<tr>
<td>20-044</td>
<td>Powered Descent Guidance for a Crewed Lunar Landing Mission</td>
<td>Sergio A. Sandoval, Ping Lu (SDSU)</td>
</tr>
<tr>
<td>20-045</td>
<td>GN&C Sequencing for Orion Rendezvous, Proximity Operations and Docking</td>
<td>Peter Z. Schulte (Draper)</td>
</tr>
</tbody>
</table>
20-046 Attitude Control and Perturbation Analysis of a Crewed Spacecraft with a Lunar Lander in Near Rectilinear Halo Orbits
Clark Newman, Diane Davis (A.I. Solutions)

20-047 Phase Control and Eclipse Avoidance in Near Rectilinear Halo Orbits
Diane Davis (A.I. Solutions)

20-048 A Practical Method for Truncating Spherical Harmonic Gravity Fields
Sean McArdle, Ryan P. Russell (University of Texas at Austin), Srinivas Bettadpur (Center for Space Research)

POSTER SESSION BREAK
Sunday 8:30-9:00 AM

Tom Knight, Sierra Nevada Corp
tom.knight@sncorp.com

A focused poster session break will take place Sunday morning to allow the poster presenters to interact with the attendees one-on-one or in small groups. Posters will remain on display for the duration of the conference.
Session V Sunday 1:30-4:00 PM

PIONEERS/TECHNOLOGY EVOLUTION
This session will offer reflections on the careers and contributions of scientists and engineers who pioneered notable technical solutions for our aerospace community and highlight significant technological advances that led to historical achievements in the space industry.

National Chairpersons
Neil Dennehy, NASA Eng. & Safety Center
cornelius.j.dennehy@nasa.gov
Tooraj Kia, NASA Jet Propulsion Laboratory
tooraj.kia@jpl.nasa.gov

Local Chairperson
Lee Barker, Lockheed Martin Space
lee.a.barker@lmco.com
Larry Germann, Left Hand Design Corp
germannl@lefthand.com

20-051 Dr. Richard Battin: Inventing and Applying Modern Space Guidance While Being a Moral Compass
Philip Hattis (Draper)

20-052 Corona: America’s First Reconnaissance Satellite
Cornelius (Neil) Dennehy (NASA)

20-053 A Cautionary Tale of a Secret, a Small Team, an Accelerated Schedule, and the Gemini IV Station-Keeping Failure
John Goodman (Odyssey Space Research, LLC)

20-054 William Lear’s Pioneering Contributions to Spacecraft Navigation Filtering

20-055 Voyager and its Team – A Journey to the Outer Planets and Beyond
Aron Wolf (JPL-Caltech)

4:15 PM SUPER BOWL ‘20
Imperial Ballroom
Family Members of conference attendees are welcome!
Sandwiches and appetizers will be served
Session VI Monday 7:00-10:00 AM

ADVANCES IN PROPULSION
The development of advanced propulsion technologies is critical for enabling spacecraft platforms ranging from CubeSats to ambitious human and robotic space exploration missions. Innovative developments in chemical, electric, nuclear, and propellant-less propulsion will provide higher performance and greater operability, enabling new approaches ranging from launch to interstellar travel. This session will highlight advanced propulsion technologies matured by NASA, DOD, industry, and academia.

National Chairpersons
Jeff Sheehy, NASA Space Technology Mission Directorate
jeffrey.sheehy@nasa.gov
Marc Young, Air Force Research Laboratory
marcus.young@us.af.mil

Local Chairperson
John Abrams, Analytical Mechanics Assoc. Inc.
j.abrams@ama-inc.com
Nick Patzer, Laboratory for Atmospheric and Space Physics
Nicholas.Patzer@lasp.colorado.edu

20-061 Magnetic Control of Propellant Sloshing in Microgravity
A. Romero-Calvo, H. Schaub
(University of Colorado at Boulder)

20-062 Flight Performance of the Propulsion Subsystem on the Green Propellant Infusion Mission
Session VII Monday 7:00-10:00 AM

HYPERSONICS, RE-ENTRY VEHICLES AND EDL

This session will focus on the status and evolutionary development of hypersonic flight, entry vehicles, and Entry Decent and Landing (EDL). Of specific interest will be mission enabling advancements including but not limited to the areas of hypersonics, deployable decelerators, GN&C sensors, novel EDL algorithms and methodologies that will be required to support hypersonic flight, large-scale Earth EDL, and aero capture capabilities for human and autonomous missions to Mars and beyond.

National Chairpersons
Sam Thurman, Jet Propulsion Laboratory
sam.w.thurman@jpl.nasa.gov
20-071 Sample-Based Robust Trajectory Optimization for Entry Vehicles
R. Derollez, Z. Manchester
(Stanford University)

20-072 Entry, Descent and Landing Trajectory Design Methods for the Dream Chaser® Spacecraft
E. Lagimoniere Jr., J. Tardy, M. Muktoyuk, R. Avram (Sierra Nevada Corp)

20-073 Robustifying Mars Descent Guidance Through Neural Networks
D. Amato, S. Hume, B. Grace, J. McMahon (University of Colorado at Boulder)

20-074 Comparative Study of Lift and Drag Modulation Control Strategies for Aerocapture
C. Heidrich, E. Roelke, S. Albert, and R. Braun (University of Colorado at Boulder)

20-075 Trajectory Reconstruction for the HTV Small Reentry Capsule
R. Nakamura, M. Haruki (JAXA)

Session VIII Monday 7:00-10:00 AM

ASTEROID EXPLORATION/SMALL BODY SAMPLE RETURN

The past few years have seen a marked increase in small body exploration for the purposes of science investigations and future in-situ resource utilization. The success of these efforts depends on the ability to guide, navigate and control the robotic systems needed to accomplish the demanding mission objectives, such as characterizing the small body after arrival, collecting samples from the surface and returning them to Earth. This session will highlight the GN&C challenges, experiences, successes and lessons learned in the exploration of asteroids, comets and other small bodies.

National Chairperson
Michael Moreau, NASA Goddard Space Center
michael.c.moreau@nasa.gov
Jay McMahon, University of Colorado at Boulder
jay.mcmahon@colorado.edu

Local Chairpersons
Dan Kubitschek, Laboratory for Atmospheric and Space Physics
daniel.kubitschek@lasp.colorado.edu
Evolving Design and Mobility of a Spacecraft on Stilts to Explore Asteroids
F. Aldava, H. Kalita, J. Thangavelautham (University of Arizona—SpaceTREx Laboratory), E. Asphaug (Lunar and Planetary Laboratory)

Polyhedral Shape from Silhouettes for Small Body Characterization

A Covariance Study for Gravity Estimation of Binary Asteroids
A. Davis, D. Scheeres (University of Colorado at Boulder)

Strategies and Flight Results of GNC System in Hayabusa2 Touchdown Operations:
Artificial Landmark Target Marker Separation and Acquisition
G. Ono, H. Ikeda, N. Ogawa, S. Kikuchi, F. Terui, T. Saiki, Y. Tsuda (JAXA)

Strategies and Flight Results of GNC System in Hayabusa2 Touchdown Operations:
Autonomous Six Degree of Freedom Control after Target Marker Acquisition
F. Terui, N. Ogawa, S. Kikuchi, G. Ono, T. Saiki, Y. Tsuda (JAXA)

20-086 Withdrawn

20-087 Image Correlation Performance Prediction for Autonomous Navigation of OSIRIS-REx Asteroid Sample Collection
C. Mario (Draper), C. Norman, C. Miller, R. Olds (Lockheed Martin Space), E. Palmer, J. Weirich (Planetary Science Institute), D. Lorenz (GSFC KBR Wyle), D. Lauretta (University of Arizona – Lunar and Planetary Laboratory)

20-088 Revisiting OSIRIS-REx Touch-And-Go (TAG) Performance Given the Realities of Asteroid Bennu
K. Berry, M. Moreau (NASA/GSFC) C. Miller, R. Olds (Lockheed Martin Space), P. Antreasian (KinetX) D. Lauretta (University of Arizona – Lunar and Planetary Laboratory)
DUAL EVENING SESSION

Session IX Monday 4:00-6:00 PM

SYSTEMS ENGINEERING IMPACTS ON GN&C DESIGN

For spacecraft missions, Systems Engineering and GN&C have an important relationship. Critical decisions are made throughout the spacecraft design by both teams and have a reciprocal impact on the other team. If done properly, the Systems Engineering and GN&C collaboration can lead to very successful designs; in contrast, poor decisions can lead to difficult and non-optimal designs leading to hardship on both teams. This session will examine the impact of Systems Engineering decisions on GN&C design and also how payload integration affects GN&C design and CONOPS. This session is open to discussing optimal Systems Engineering approaches that lead to a seamless GN&C design and process; additionally, this session is open to instances where Systems Engineering decisions have led to difficult GN&C experiences and have required ingenuity and clever solutions to meet requirements and result in successful missions.

National Chairpersons
Bill Frazier, Jet Propulsion Laboratory
william.e.frazier@jpl.nasa.gov
Paul Graven, Cateni
paul@graven.com

Local Chairpersons
Michael Osborne, Lockheed Martin Space
michael.l.osborne@lmco.com
Cody Allard, Ball Aerospace
callard@ball.com

20-091 Simulation-Based Analysis and Prediction of Thrust Vector Servoelastic Coupling
J. Orr, J. Wall (NASA/MSFC), and T. Barrows (Draper-Retired)
Hardware Verification and Validation for a Navigation Sensor Software Model in Support of Flight Vehicle Performance Analysis
E. Anzalone, N. Hoen, and T. Park (NASA/MSFC)

System Design for Near-Global Imaging of Triton
W. Frazier (JPL-CalTech), D. Putnam, R. Schindhelm, and M. Veto (Ball Aerospace)

Dream Chaser Spacecraft Thruster Fault Detection, Isolation, and Recovery Algorithm Design during Breakout Maneuvers
R. Avram (Sierra Nevada Corp)

Linear Covariance Tool Development for Navigation System Design and Analysis of Lunar Lander Missions
R. Christensen, D. Geller, and M. Hansen (Utah State University)

Launcher Structural Dynamics and Control Integrated Design
M. Ganet-Schoeller, V. Pothier, and V. Le-Gallo (Ariane Group)

Session X Monday 4:00-6:00 PM EXPLORING MARS
In recent years, the exploration and habitation of Mars has become popularized in the commercial and private aerospace communities. As the closest and most hospitable planet near Earth, it is the most obvious next step in human space exploration. Exploring Mars poses a unique set of challenges in navigation, entry into a highly variable atmosphere, radiation resistance, and autonomous exploration. This session will explore the difficulties present in reaching Mars.
and the innovative GN&C technologies and spacecraft operations that will aid in the manned and unmanned exploration of the planet.

National Chairpersons
Hanspeter Schaub, University of Colorado at Boulder
hanspeter.schaub@colorado.edu
Andrew Johnson, Jet Propulsion Laboratory
andrew.e.johnson@jpl.nasa.gov

Local Chairpersons
Federico Gasperini, University Corporation for Atmospheric Research
federico@ucar.edu
Jorgen Baertsch, Left Hand Design Corp
jbaertsch@lefthand.com
Zach Yearout, Left Hand Design Corp
zyearout@lefthand.com

20-101 **Mars 2020 Autonomous Rover Navigation**
N. Abcouwer, J. Biesiadecki, T. Del Sesto, A. Johnson, T. Litwin, M. Maimone, M. McHenry, R. Rieber, O. Toupet, P. Twu (JPL-CalTech)

20-102 **Escape and Plasma Acceleration and Dynamics (ESCAPADE)**
J. S. Parker, N. Parrish (Advanced Space), R. Lillis, S. Curry, and D. Curtis (University of California at Berkeley)

20-103 **Avionics Hardware Modeling and Embedded Flight Software Testing in an Emulated Flat-Sat**
M. C. Margenet, H. Schaub, and S. Piggott (University of Colorado at Boulder)

20-104 **Attitude Control of an Inflatable Aircraft for Mars Exploration**
T. Schuler (University of Arizona – SpaceTREx Laboratory), A. Bouskela, S. Shkarayev (Micro Air Vehicle laboratory), J. Thangavelautham (University of Arizona – SpaceTREx Laboratory)

- 25 -
The Mars 2020 Lander Vision System Field Test

Challenges of Mars Sample Return Lander Entry, Descent, and Landing
M. C. Ivanov and S. W. Sell (JPL-CalTech)

NETWORKING AND CAREER EVENT: INSPIRATIONAL WOMEN IN SPACE
6:30-7:30 PM at Imperial Ballroom
Light Appetizers and Cocktails

This event is open to anyone who has ever been inspired by what is possible in our field and how our most accomplished professional women found their way to a rewarding career.

Keynote Speaker: Dr Janet Kavandi

Dr Kavandi is a veteran of three spaceflights. She previously served as director of NASA’s Glenn Research Center. After a 25-year career with NASA, Dr Kavandi joined Sierra Nevada Corporation as Senior VP for Space Systems.
The depth and breadth of control and guidance theory often enables several solutions for a given problem. Of particular interest is the novel application of established and recently advanced techniques. This session brings together solutions to aerospace problems that were solved using a wide variety, and various combinations, of traditional and recent advances in control and guidance theory.

National Chairperson
Tim Crain, Intuitive Machines, tim@intuitivemachines.com
Robyn Woollands, Jet Propulsion Laboratory robyn.m.woollands@jpl.nasa.gov

Local Chairpersons
Hank Steadman, Lockheed Martin Space harrison.steadman@lmco.com
Drew Engelmann, Laboratory for Atmospheric Space and Physics drew.engelmann@lasp.colorado.edu

20-111 Design and Development of a Fixed-Pitch Electric Coaxial Helicopter with Variable Center of Gravity Control
I. Khawaja, G. Gensler, N. Gupta, M. Pandya, N. Pillai (University of Maryland)

20-112 Modeling Effective Control of Satellite Oscillations Using a Finite Element Method
R. Sakamoto, D. Scheeres (University of Colorado at Boulder)
M. Lieber, R. Rohrschneider, R. Schindhelm, Z. Britt, J. Weinberg, S. Roark (Ball Aerospace)

20-114 Optical Wavefront Error Estimation Algorithm Using Temperature Measurements for Segmented Space Telescopes
J. Runnels, C. Allard, J. Scott Knight (Ball Aerospace)

20-115 Lyapunov Optimal Control for Many-Revolution Low-Thrust Orbit Transfers and Guidance
J. Peterson, J. Junkins (Texas A&M University), E. Taheri (University of Auburn)

20-116 Dream Chaser® Spacecraft Deorbit Burn Guidance Algorithm and Fuel Efficiency Analysis
B. Cannataro, D. Benson, S. Thrasher (Draper)

20-117 Deep On-Board Scheduling for Autonomous Attitude Guidance Operations
A. Harris, H. Schaub (University of Colorado at Boulder)

20-118 A Generalized Guidance Approach to In-Space Solid-Propellant Vehicles Maneuvers
J. Everett (NASA MSFC)
Session XII Tuesday 7:00-10:00 AM
ADVANCES IN NAVIGATION
Recent advances in navigation seek to push the boundaries of spacecraft navigation technology and address the shortcomings of current navigation systems. With the prospect of deploying large-scale constellations in the Earth orbit and the need for maintaining a safe orbital environment for all operators, new navigation techniques and robust architectures are required to complement the existing ground-based and GNSS systems. Other future lunar, interplanetary, and interstellar mission concepts require novel ways for collecting and processing observations from non-traditional sources. In this session, we will explore novel and advanced ground-based, space-based, and autonomous spacecraft navigation approaches. Of particular interest are methods for inter-satellite navigation and lost-in-space scenarios as well as new filtering techniques for processing optical observations, pulsar observations, and other deep space signals of opportunity.

National Chairpersons
John Christian, Rensselaer Polytechnic Institute chrisj9@rpi.edu
Shyam Bhaskaran, Jet Propulsion Laboratory shyamkumar.bhaskaran@jpl.nasa.gov

Local Chairpersons
Siamak Hesar, Blue Canyon Technology shesar@bluecanyontech.com
Morgan Yost, Lockheed Martin Space morgan.yost@lmco.com

20-121 Simultaneous and Distinct Visible and Thermal Radiation Pressure Dynamics
S. Carnahan, H. Schaub (University of Colorado at Boulder)
20-122 Europa-Clipper Stellar Reference Unit Filtering Techniques for Processing Optical Observations
B. Gelin, Y. Henriquel, L. Nicollet (Sodern), G. Massone, J. Alexander, Herrick Chang (JPL-CalTech)

20-123 Guide Star Selection for Spacecraft Navigation with StarNAV
W. Parker, R. Thibeault, J. A. Christian (Rensselaer Polytechnic Institute)

20-124 Satellite Navigation Using X-ray Pulsars and Horizon Crossings of X-ray Stars
K. S. Wood (Praxis Inc.)

20-125 Optical Navigation for Autonomous Approach of Small Unknown Bodies
J. Villa (KTH, Royal Institute of Technology), S. Bandyopadhyay, B. Morrell, B. Hockman (JPL-CalTech), A. Harvard, S.J. Chung (California Institute of Technology), S. Bhaskaran, I. Nesnas (JPL-CalTech)

20-126 Autonomous on-orbit Optical Navigation Techniques for Robust Pose-Estimation
T. Teil, H. Schaub (University of Colorado at Boulder)

20-127 Smart Nav Targeting Algorithm for the Dart Mission
P. Ericksen, M. Chen, S. Jenkins, M. Jensenius (Johns Hopkins University – APL)

20-128 THIN VPU: Open Source Vision Processing for Space Navigation
S. Stewart, T. Crain, G. Molina (Intuitive Machines)
Successful GN&C system performance is often dependent on innovative software. This session is open to all development processes and systems ranging from vehicle code used to operate the spacecraft system, ground software used for operations/analysis, or simulations/frameworks used to test, validate or develop GN&C systems. The intent is to include current best practices as well as challenges in future software development such as the inclusion of complex systems like artificial intelligence, machine learning, vision processing, and iterative numerical solvers.

National Chairpersons
Miguel San Martin, Jet Propulsion Laboratory
alejandro.m.sanmartin@jpl.nasa.gov
Blair Thompson, Aleut Management Services
blair.thompson@aleutmgt.com

Local Chairpersons
Scott Piggott, Laboratory for Atmospheric and Space Physics
scott.Piggott@lasp.colorado.edu
Tomas Ryan, Ball Aerospace
tryan@ball.com
20-131 Compact Frame Independent Spacecraft Dynamics Development Using Sympy Python Library
Cody Allard (Ball Aerospace), Drew Engelmann (Laboratory for Atmospheric Space Physics)

20-132 Effect of Spacecraft Parameters on Identification of Debris Strikes in GN&C Telemetry
Anne Aryadne Bennett and Hanspeter Schaub (University of Colorado at Boulder)

20-133 Alpha-Beta Filter: Design, Implementation, And Performance for Spacecraft GN&C Applications
Tom L. Riggs (USAF and Lockheed Martin – Retired)

20-134 A New Messaging System for Basilisk
Scott J.K. Carnahan, Scott Piggott, Hanspeter Schaub (University of Colorado at Boulder)

20-135 Semi-Analytic Method for Repeat Ground Track Orbit Design
Blair Thompson, Aaron Brogley (Odyssey Space Research)

20-136 Python Scientific Programming Tool Suite for Analysis and Verification of Artemis-1 Navigation System
Brandon Wood (NASA/JSC)

20-137 Validation of The Laguerre Method for Solving the 8th Order Polynomial of Angles-Only Initial Orbit Determination
Blair Thompson, Ryan Cobb (Aleut Aerospace Engineering)

Tuesday, February 4th
Optimal Relative Trajectory Design with Mission Constraints and Performance Requirements
Nathan B. Stastny (Space Dynamics Laboratory), David K. Geller (Utah State University)

Session XIV Tuesday 4:00-7:00 PM
AUTONOMOUS RPOD, SERVICING, COLLISION AVOIDANCE AND DEBRIS REMOVAL

With each passing year, the utilization of space and complexity of systems continues to grow at an ever-increasing rate. Autonomous rendezvous, proximity operations, and docking are key enablers to supporting our key objectives such as maintaining the International Space Station or placing boots on the lunar surface again. Additionally, there is continued interest in the commercial servicing of existing spacecraft and removing orbital debris. This session explores all aspects of enabling technologies for Navigation, Guidance and Control, Computer Vision, Robotics, and Safety of Flight to support this class of missions.

National Chairpersons
Tim Payne, USSF S3/6Z
timothy.payne@us.af.mil
Apoorua Bhopale, Air Force Research Laboratory, apoorua.bhopale.1@us.af.mil

Local Chairpersons
Cheryl Walker, Parsons
cheryl.a.walker@parsons.com
David Chart, Sierra Nevada Corp
david.chart@sncorp.com

Rendezvous and Proximity Operations for Active Debris Removal Satellites Considering Trajectory Safety
Takahiro Sasaki, Yu Nakajima, and Toru Yamamoto (JAXA)

20-142 An Analytic Guidance Law for Safety Ellipse Reconfigurations
Simon Shuster and David Geller (Utah State University)

20-143 Sub-Minimum Impulse Attitude/Rate Control of Spacecraft
John P. McCullough, III (NASA/MSFC), Steven L. Hough (Dynamic Concepts, Inc), Keith R. Clements (ERC, Inc), Robert A. Hall (Mclaurin Aerospace)

20-144 Design, Development and Ground Testing of an Autonomous Astronautical Debris Mitigation (AADM) System
Caleb Peck, Joe Hiemerl, James McElreath, Andrew Verras, Davis Adams, Manoranjan Majji, Moble Benedict, J. Junkins (Texas A&M University)

20-145 Design of Safe Abort Corridors for the Dream Chaser® Spacecraft
Christopher Jewison, David Benson, Louis Breger (Draper)

20-146 Optimal Low Thrust Orbit Transfers for Space Telescope Refueling at SEL2
Robyn Woollands (JPL-CalTech), Siegfried Eggl (University of Washington)

20-147 Modeling, Control and Laboratory Testing of an Electromagnetic Docking System for Small Satellites
Aaditya Ravindran, Leonard Vance, Jekan Thangavelautham (University of Arizona – SpaceTREx Laboratory)

Flash LIDAR On-Orbit Performance at Asteroid Bennu
Estelle Church (Lockheed Martin Space), Tyler Bourbeau, James Curriden (Advanced Scientific Concepts, Inc), Angelica Deguzman, Frank Jaen (Lockheed Martin Space), Brad Short (Advanced Scientific Concepts, Inc), Huikang Ma, Keith Mahoney, Kristian Waldorff, Oliver Walthall (Lockheed Martin Space), Dante Lauretta (University of Arizona – Lunar and Planetary Laboratory)
WEDNESDAY, FEBRUARY 5TH MORNING SESSION

Session XV Wednesday 7:00-10:00 AM
RECENT EXPERIENCES
This session focuses on recent experiences in spaceflight GN&C, providing a forum to share insights gained through successes and failures. Discussions typically include GN&C experiences ranging from Earth orbiters to interplanetary spacecraft. This session is a traditional part of the conference and has shown to be most interesting and informative.

National Chairpersons
David Dannemiller, NASA Johnson Space Center
david.p.dannemiller@nasa.gov
Islam Hussein, Thornton Tomasetti
ihusein@thorntontomasetti.com

Local Chairpersons
Kip Gwin, Ball Aerospace
kgwin@ball.com
Cody Griffin, Sierra Nevada Corp
cody.griffin@sncorp.com

20-151 Trajectory Design and Maneuver Performance of the OSIRIS-REx Detailed Survey of Bennu

20-152 Orion Ascent Abort-2 Navigation System Implementation and Post-Flight Assessment
E. Kollin (NASA/JSC)

20-153 OSIRIS-Rex Shape Model Performance During the Navigation Campaign

- 36 -
On Orbit Evaluation of Natural Feature Tracking for OSIRIS-Rex Sample Collection

C. Miller, R. Olds, C. Norman, S. Gonzales (Lockheed Martin Space), C. Mario (The Charles Stark Draper Laboratory), J. Leonard (KinetX, Inc.), D. Lauretta (University of Arizona - Lunar and Planetary Laboratory)

On-Orbit Performance of the BCP-100 Green Propellant Infusion Mission

B. Marotta, C. McLean, B. Porter (Ball Aerospace)

The Voyagers: Risky Business Beyond the Heliopause

B. Wagoner, W. Frazier (JPL - Caltech)

Seeker Free-Flying Inspector GNC Flight Performance

S. Pedrotty, J. Sullivan, E. Gambone (NASA/JSC), and T. Kirven (Jacobs Engineering)
<table>
<thead>
<tr>
<th>Name</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amy Delay</td>
<td>Lockheed Martin Space</td>
</tr>
<tr>
<td>Michelle Barath</td>
<td>Lockheed Martin Space</td>
</tr>
<tr>
<td>John Abrams</td>
<td>Analytical Mechanics</td>
</tr>
<tr>
<td>Cody Allard</td>
<td>Ball Aerospace</td>
</tr>
<tr>
<td>Jorgen Baertsch</td>
<td>Left Hand Design Corp</td>
</tr>
<tr>
<td>Lee Barker</td>
<td>Lockheed Martin Space</td>
</tr>
<tr>
<td>John Bendle</td>
<td>Lockheed Martin Space</td>
</tr>
<tr>
<td>Jim Chapel</td>
<td>Lockheed Martin Space</td>
</tr>
<tr>
<td>David Chart</td>
<td>Sierra Nevada Corp</td>
</tr>
<tr>
<td>Michael Drews</td>
<td>Lockheed Martin Space</td>
</tr>
<tr>
<td>Drew Engelmann</td>
<td>LASP</td>
</tr>
<tr>
<td>Federico Gasperini</td>
<td>UCAR</td>
</tr>
<tr>
<td>Larry Germann</td>
<td>Left Hand Design Corp</td>
</tr>
<tr>
<td>Ian Gravseth</td>
<td>Ball Aerospace</td>
</tr>
<tr>
<td>Cody Griffin</td>
<td>Sierra Nevada Corp</td>
</tr>
<tr>
<td>Kip Gwin</td>
<td>Ball Aerospace</td>
</tr>
<tr>
<td>Heidi Hallowell</td>
<td>Ball Aerospace</td>
</tr>
<tr>
<td>Siamak Hesar</td>
<td>Blue Canyon Technologies</td>
</tr>
<tr>
<td>Vasili Kamtsioras</td>
<td>Ball Aerospace</td>
</tr>
<tr>
<td>Ellis King</td>
<td>Lockheed Martin Space</td>
</tr>
<tr>
<td>Tom Knight</td>
<td>Sierra Nevada Corp</td>
</tr>
<tr>
<td>Dan Kubitschek</td>
<td>LASP</td>
</tr>
<tr>
<td>Ernie Lagimoniere</td>
<td>Sierra Nevada Corp</td>
</tr>
<tr>
<td>Harvey Mamich</td>
<td>Lockheed Martin Space</td>
</tr>
<tr>
<td>Alex May</td>
<td>Lockheed Martin Space</td>
</tr>
<tr>
<td>Shawn McQuerry</td>
<td>Lockheed Martin Space</td>
</tr>
<tr>
<td>Kyle Miller</td>
<td>Ball Aerospace</td>
</tr>
<tr>
<td>Michael Osborne</td>
<td>Lockheed Martin Space</td>
</tr>
<tr>
<td>Jeff Parker</td>
<td>Advanced Space</td>
</tr>
<tr>
<td>Nick Patzer</td>
<td>LASP</td>
</tr>
<tr>
<td>Scott Piggott</td>
<td>LASP</td>
</tr>
<tr>
<td>Graeme Ramsey</td>
<td>Lockheed Martin Space</td>
</tr>
<tr>
<td>Andrew Riskus</td>
<td>Ball Aerospace</td>
</tr>
<tr>
<td>Jim Russell</td>
<td>Lockheed Martin Space</td>
</tr>
<tr>
<td>Tomas Ryan</td>
<td>Ball Aerospace</td>
</tr>
<tr>
<td>DeAnn Redlin Sanders</td>
<td>Ball Aerospace</td>
</tr>
<tr>
<td>Mathew Sandnas</td>
<td>Ball Aerospace</td>
</tr>
<tr>
<td>Hank Steadman</td>
<td>Lockheed Martin Space</td>
</tr>
<tr>
<td>Meredith Stephens</td>
<td>Ball Aerospace</td>
</tr>
<tr>
<td>Jastesh Sud</td>
<td>Lockheed Martin Space</td>
</tr>
<tr>
<td>Cheryl Walker</td>
<td>Parsons</td>
</tr>
<tr>
<td>Zach Yearout</td>
<td>Left Hand Design Corp</td>
</tr>
<tr>
<td>Morgan Yost</td>
<td>Lockheed Martin Space</td>
</tr>
</tbody>
</table>
Please join us next year for the 2021 AAS GN&C Conference