PROGRAM

41st ANNUAL AAS GUIDANCE & CONTROL CONFERENCE

February 1st to February 7th, 2018

Classified Session Classified Advances in G&C and Classified Recent Experiences

Pre-registration by Jan 18, 2018 is required and will be controlled (walk-ins will NOT be admitted). Attendees must register for the entire AAS conference to be eligible to attend classified sessions. Contact a local chairperson for more information.

Location of Classified Session:

The Aerospace Corporation 7250 Getting Heights Colorado Springs, CO 80916 **Traditional Conference Location**

Beaver Run Conference Center 620 Village Rd Breckenridge, Colorado 80424 (970) 453-6000

Room check-in at the Beaver Run Resort front desk 4:00 p.m. daily.

Conference Registration

Friday 5:00 to 8:00 p.m. Daily 6:30 to 10:00 a.m. and 4:00 to 6:00 p.m.

Registration Questions

Lis Garratt	303-931-7622
Amy Delay	303-731-9876
Carolyn O'Brien	720-277-5851

41th Annual AAS Guidance, Navigation & Control Conference Chairperson

Dr. Cheryl Walker Lockheed Martin 303-977-2149 cheryl.a.walker@lmco.com

Wi-Fi Access

Select "Beaver Run Meeting" wireless network Open a browser window Enter voucher code: AAS2018

Preprint Paper Access (read-only)

Go to webpage: <u>https://goo.gl/4SYSTE</u>

Note: download the .zip file for all available preprint papers

Thursday, February 1nd

Badging and Breakfast	8–9 AM
Classified Session	9 AM–4:30 PM

Friday, February 2rd

Badging and Breakfast	8–9 AM
Classified Session	9 AM–12:30 PM
Conference Registration	5–8 PM
Welcome Reception	6–9 PM

Saturday, February 3rd

Morning Session7–10 AMAAS STEM SCAPE Event10:30 AM–4 PMNASA Astronaut for Children4–5 PMTechnical Exhibits & Presentation of StudentAwards5–8 PM

Sunday, February 4th

Posters Focus Session	8:30–9 AM
Morning Sessions	7–10 AM
Beyond the Textbook Tutorial	11 AM–2 PM
Afternoon Sessions	2–4 PM
Super Bowl '18 in Imperial Ballr	oom 4:15 PM

Monday February 5th

Morning Sessions	7–10 AM
Beyond the Textbook Tutorial	1:30-3:30 PM
Afternoon Sessions	4–7 PM

Tuesday February 6th

Morning Sessions	7–10 AM
Beyond the Textbook Tutoria	als
10:30 AM-12:30 PM and	1 PM–3 PM
Afternoon Sessions	4–7 PM

Wednesday, February 7th

Morning Session

7-10 AM

SATURDAY, February 3rd 7 AM Conference Opening

Session I

7–10 AM

Student Innovations in GN&C

This session embraces the wealth of research and innovative projects related to spacecraft GN&C being accomplished in the university setting. Papers in this session address hardware/software research as well as component, system or simulation advances. Papers submitted must have a student as the primary author and presenter. Papers will be adjudicated based on level of innovation, complexity of problem solved, perceived technical readiness level, applicability and fieldability to near-term systems, clarity of written and verbal delivery, number of completed years of schooling and adherence to delivery schedule. The session will be limited to 8 papers with the top 3 papers receiving awards.

National Chairpersons

David Geller, Utah State University david.geller@usu.edu

Lt. Col. Michael Sobers, United States Air Force Academy michael.sobers@usafa.edu

Local Chairpersons Ian Gravseth, Ball Aerospace

igravseth@ball.com

David Chart, Lockheed Martin david.a.chart@lmco.com

18-011	Combining Orbit Determination and Landed Transponder Spin- State Solutions via Multi-Arc Filtering
	A. French, J. McMahon (University
18-012	Rapid Motion Control of Flexible
	A Atwood M Criggs S
	A. Alwoou, M. Griggs, S. Woidakowski, M. Karpenko (Naval
	Postgraduate School)
18-013	Time-varving Communication
	Topology in Consensus
	Estimation of Spacecraft
	Relative Orbital Motion
	J. Wang, E. Butcher (University of
	Arizona), Alan Lovel (Air Force
	Research Laboratory)
18-014	Optimal Rate Observability
	Trajectory Planning For
	Proximity Operations Using
	Angles-Only Navigation
	F. Franquiz, B. Udrea, M. Balas
	(Embry-Riddle Aeronautical
40.045	University)
18-015	Validation of a GNC Algorithm
	Using a Stereoscopic Imaging
	Sensor to Conduct Close
	Proximity Operations
	D. Jennings, J. Davis,
	P. Galchenko,
	R. Pernicka (Missouri University Of
18-016	Constructing a 3D Scale Space
	from Implicit Surfaces for Vision
	A Rhodes J Christian (West
	Virginia University)
18-017	Autonomous Shape
	Determination Using Flash-Lidar
	Observations and Bezier
	Patches
	B. Bercovici, J. McMahon
	(University of Colorado Boulder)

 18-018 Optimizing Satellite Orbital Geometries for Geolocation using RF Localization
D. Lujan (Missouri University of Science and Technology), E. Clark, T. Lovell (Air Force Research Laboratory)

AAS STEM-SCAPE Event 10:30 AM-4 PM

In 2018, we will be hosting annual STEM event for one hundred high school students of diverse background from across the Denver metropolitan area. The event, called AAS STEM-SCAPE for "Student Career Arcs to Professional Engineers," will trace the elements of a successful career journey in aerospace including High School and University education, initial employment and ultimately a rewarding profession. The keynote speaker will be followed by a STEM career panel. The event concludes with a short design project that will be co-led with student volunteers from the University of Colorado.

Local Chairpersons

Michael Drews, Lockheed Martin michael.e.drews@lmco.com

Meredith Stephens, Ball Aerospace <u>mstephen@ball.com</u>

Special Event for Children of Conference Attendees and the Beaver Run Employees at 4 PM

NASA Astronaut, Richard Hieb

This presentation will inspire our next generation of engineers by offering kids the opportunity to interact with an astronaut. Mission specialist on STS-39 and STS-49, payload commander on STS-65

Technical Exhibits

The Technical Exhibits Session is a unique opportunity to observe displays and demonstrations of state-of-the-art hardware, design and analysis tools, and services applicable to advancement of guidance, navigation, and control technology. The latest commercial tools for GN&C simulations. analysis, and graphical displays are demonstrated in a hands-on, interactive environment, including lessons learned and undocumented features. Associated papers not presented in other sessions are also provided and can be discussed with the author. Come enjoy an excellent complimentary buffet and interact with the technical representatives and authors. This session takes place in a social setting and family members are welcome!

Local Chairpersons

Jim Russell, Lockheed Martin james.f.russell@lmco.com

Thomas Segal, Metropolitan State University of Denver tsegal1@msudenver.edu Exhibitors: AAC Microtec Adcole Maryland Aerospace **Airbus** GmbH **Ball Aerospace** BEI Blue Canyon Technologies Cayuga EADS Sodern Honeywell Jena-Optronik GmbH Jet Propulsion Laboratory Lockheed Martin Mathworks NewSpace Systems Northrop Grumman Sierra Nevada Corporation Utah State University Space Dynamics Laboratory

SUNDAY, FEBRUARY 4th

Poster Focus Session

8:30-9 AM

The Poster Focus Session offers a unique forum for authors and interested parties to discuss relevant topics. Authors are required to accompany their posters during the Poster Focus Session. Posters do not require an accompanying written paper. However, authors who wish to have their work published in the proceedings can submit a written paper along with the poster.

In addition to the Poster Focus Session, posters will be available for viewing every day in the main conference room.

Local Chairpersons Reuben Rohrschneider, Ball Aerospace Company <u>rrohrsch@ball.com</u> Entry, Descent, and Landing Guidance with Direct Force Control Using Aerodynamic Shape Morphing

R. Lugo, R. Powell (AMA), A. Slagle, A. Korzun, A.Cianciolo (NASA)

Vision based tracking controller for an on-orbit meteor observer R. T. Nallapu, A. Ravindran, J. Thangavelautham (University of Arizona)

A Micro-Newton Impulse-Bit Hydrazine Thruster Design, Test and Mission Applications J.M. Parker (NASA/JPL), J. Blandino (Worcester

Polytechnic Institute), D. Skulsky, J.R. Lewis (NASA/JPL)

Spacecraft Attitude Control Using Circulating Liquid Metals

J. Thangavelautham, R. T. Nallapu (University of Arizona)

Reaction Wheel Energy Storage in a Small Satellite

M. Duntz, F. Fogle, L. Sauter (United States Air Force Academy)

On-Orbit Satellite Servicing Using Multiple Tethered Robots

H. Kalita (University of Arizona)

Dither Gyro Scale Factor Calibration the GOES-16 Flight Experience

A. Reth (Chesapeake Aerospace)

Dual Morning Sessions

Session III 7–8:30 / 9–10:30 AM

Advanced Propulsion

The development of advanced propulsion technologies is critical for enabling spacecraft platforms ranging from CubeSats to ambitious human and robotic space exploration missions. Innovative developments in chemical, electric, nuclear, and propellantless propulsion will provide higher performance and greater operability, enabling new approaches ranging from launch to interstellar travel. This session will highlight advanced propulsion technologies matured by NASA, DOD, industry, and academia.

National Chairperson

Jeff Sheehy, NASA STMD jeffrey.sheehy@nasa.gov

Local Chairpersons

John Abrams, Analytical Mechanics Associates j.abrams@ama-inc.com

Christopher McLean, Ball Aerospace <u>cmclean@ball.com</u>

Nick Patzer, LASP Nicholas.Patzer@lasp.colorado.edu

- ¹⁸⁻⁰³¹ Mission Design Implications of the Updated Electric Sail Thrust Model A. Heaton (NASA)
- ¹⁸⁻⁰³² Solar Electric Propulsion Architectural Options for Future Applications on Ball Configurable Platforms
 B. Deininger, R. Dissly, S. Enger, JC SotoMike, J. Weinberg O'Hara (Ball Aerospace)

18-033	Hybrid Rocket Propulsion Technology Development for Low Temperature Ashley Karp (JPL)
18-034	Earth to Mars Abort Analysis
	for Human Mars Missions
	R. Joyner, J. Horton, T. Kokan, D.
	Levack, F. Widman (Aerojet
	Rocketdyne)
18-035	Fusion and Fission/Fusion
	Hybrid Propulsion Concepts for
	Rapid Exploration of the Solar
	System
	J. Cassibry (University of
	Alabama, Huntsville)
18-036	Magnetoshell Aerocapture for
	Manned Missions and
	Planetary Deep Space Orbiters
	A. Pancotti (MSNW)
18-037	Continuous Grid Inertial
	Electrostatic Confinement
	Fusion
	R. Sedwick, A. Chap, N. Schilling
	(University of Maryland)

Session IV 7–8:30 / 9–10:30 AM

Small Satellite GN&C

Cubesats and smallsats range in mass from less than 1kg up to 180kg, and are gaining in popularity and utility. At the high end of this mass range, 100 to 180kg ESPA-class spacecraft are now trusted platforms for scientific and defense missions and offer pointing accuracy, pointing stability, and position knowledge that is compatible with Earth science missions. For cubesats, the GN&C capabilities are advancing quickly in an effort to support science and technology development missions. RPO and docking as well as significant on-board mission data processing capabilities. This session is open to papers covering both hardware and software aspects of smallsat and cubesat GN&C. Papers on technology development for GN&C and mission GN&C experience are welcomed.

National Chairpersons

Scott Palo, University of Colorado scott.palo@colorado.edu Paul Mason, NASA GSFC paul.a.mason@nasa.gov

Local Chairpersons

Jacob Griesbach, Ball Aerospace jgriesba@ball.com Jeffrey Parker, Advanced Space parker@advanced-space.com

18-041	GNC Implementations for Small
	Interplanetary and Lunar
	Spacecraft
	M. Baumgart (Blue Canyon)
18-042	Mobility and Science
	Operations on an Asteroid
	Using a Hopping Small
	Spacecraft on Stilts
	H. Kalita (University of Arizona)
18-043	Dynamic Programming Based
	Attitude Trajectories for
	Underactuated Control
	Systems
	Vedant (University of Illinois)
18-044	Sensor Fusion for Attitude
	Determination
	Vedant (University of Illinois)
18-045	Advanced GNC Techniques for
	Autonomous Rendezvous
	Proximity Operations and
	Docking of Small Satellites
	Christopher W. T. Roscoe, Jason
	J. Westphal, Jason Crane, and
	Islam I. Hussein (Applied Defense
	Solutions)

- 18-047 Verification of Attitude Determination and Control Capabilities for CubeSat-Class Spacecraft M. Sorgenfrei (SGT/NASA Ames)
- 18-048 Effects of Atmospheric Density Uncertainties on the Probability of Collision for Small Satellites C. Bussy-Virat (University of Michigan)

TUTORIAL SESSION

11 AM-1 PM

Beyond the Textbook Tutorial: Hands-on Demonstration of Using the Basilisk Astrodynamics Framework

Speaker: Hanspeter Schaub, University of Colorado

Parallel Afternoon Sessions

Session V 2–4 PM Entry Descent & Landing GN&C

Entry, descent, and landing technologies enable surface exploration of celestial bodies and safe return of payloads to Earth. Recent advances have improved landed mass capability at Mars and enabled the reuse of launch vehicle first stages. Ongoing work to further improve performance at government, industry, and university laboratories will enable more ambitious missions in the future. This session provides a venue for the discussion of advanced guidance and control technology for atmospheric entry vehicles and powered and unpowered descent and landing systems, including technologies for precision navigation and targeting, hazard avoidance, and safe landing.

National Chairpersons

Zach Putnam, University of Illinois zputnam@illinois.edu

Michelle Munk, NASA michelle.m.munk@nasa.gov

Local Chairpersons

Reuben Rohrschneider, Ball Aerospace rrohrsch@ball.com

Michael Osborne, Lockheed Martin michael.l.osborne@Imco.com

18-051	CORAL T: A Torrestrial Elight
10-001	COBALT. A Terrestrial Flight
	lest of Landing Navigation
	using Lander Vision System
	with Navigation
	S. Collins, C. Seubert (NASA
	JPL)
18-052	Aerocapture System Options
	for Delivery of Small Satellites
	to Mars
	J. Williams, G. Falcone, Z.R.
	Putnam (University of Illinois)
18-053	Entry Descent and Landing
	Performance for a Mid-L iff-to-
	Drag Patio Vohiclo at Mare
	Diag Ratio Venicie at Mars
	B. JUIIISUII, E. DIAUEII, R.
	Sostaric, C. Cerimele (INASA
40.054	JSC), P. Lu (SDSU)
18-054	Fuel-Optimal and Apollo
	Powered Descent Guidance
	Compared for High-Mass Mars
	Mission
	P. Lu (SDSU)
18-055	Paper Withdrawn

- 14 -

Session VI

2–4 PM

GN&C Challenges of Asteroid Deflection

In recent years, the detection of small bodies threatening the Earth and the characterization of asteroids for the purpose of resource utilization have received much attention. Threat mitigation efforts include actively perturbing the trajectory, while utilization efforts might include redirecting these small bodies to locations which facilitate access. The success of these endeavors depends directly on the ability to guide, navigate and control the robotic systems needed to meet that challenge. This session will highlight the Guidance, Navigation and Control challenges of deflecting and redirecting small bodies such as comets and asteroids.

National Chairpersons

Dr. Paul Chodas, NASA-Jet Propulsion Laboratory Paul.w.chodas@jpl.nasa.gov

Local Chairpersons

Daniel Kubitschek, University of Colorado/Boulder LASP daniel.kubitschek@lasp.colorado.edu

Charlie Schira, PlanetiQ charlie.schira@planetiq.com

 ¹⁸⁻⁰⁶¹ Dynamics and Control of a Tethered Enhanced Gravity Tractor Performing Asteroid Deflection
H. Shen (Analytical Mechanics

Associates, Inc.), C. Roithmayr, Y. Li (NASA-Langley)

18-062	Osiris-REx Navigation performance during First Leg of OUTBOUND Cruise P. Antreasian, J. Leonard, J. McAdams, B. Page, D. Wibben,
	K. Williams (KinetX), M. Moreau (NASA-GSFC)
18-063	Small-body Maneuvering
	Autonomous Real-Time
	Navigation (SMART Nav):
	guiding a spacecraft to
	Didymos
	M. Chen, J. Atchison, D. Carrelli,
	P. Ericksen, Z. Fletcher, S.
	Jenkins, S. Jensenius, N. Mehta,
	I. Miller, D. O'Shaughnessy
40.004	(JHU-APL)
18-064	The RVS3000 and RVS3000-3D
	LIDAR Sensors - Test Results
	and Development Outlook
	F. M. Kolb, S. Dochow, C.
	Helimann, B. Linnart, C. Schmitt,
	Mindanuallar (Jana Ontranila
18-065	GMDH) OSIDIS DEx Cuidence Nevinetion
10-005	osiRis-Rex Guidance, Navigation
	Bonny Provimity Operations
	P Olde T Schlankohl (Lockhood
	N. Olus, T. Schlapkoni (Lockheeu

Martin)

Super Bowl '18

4:15 in the Imperial Ballroom

Family Members of conference attendees are welcome!

Sandwiches and appetizers will be served

MONDAY, FEBRUARY 5TH

Parallel Morning Sessions

Session VII

7–10 AM

Advances in GN&C Algorithms

Successful GN&C system performance is often dependent on innovative software.

This session is open to all development processes and systems ranging from vehicle code used to operate the spacecraft system, ground software used for perations/analysis, or simulations/frameworks used to test, validate or develop GN&C systems. The intent is to include current best practices as well as challenges in future software development such as the inclusion of complex systems like artificial intelligence, machine learning, vision processing, and iterative numerical solvers.

National Chairpersons

Mark Jackson, Blue Origin MJackson@blueorigin.com

Local Chairpersons

Scott Piggott, University of Colorado scott.piggott@lasp.colorado.edu Tomas Ryan, Ball Aerospace tryan@ball.com

18-071	Closed Loop Pointing of the Remote Sensing Mast of the Mars 202 Rover P. Brugarolas, Z. Rahman, J. Casoliva, G. Griffin, A. Johnson, Y.
18-072	Cheng (JPL) Comparing Coarse Sun Sensor Based Sequential Sun-heading Filters T. Teil, S. Piggott, H. Schaub (University of Colorado)

ert
'
าร
)
-
t
f

Future of Crewed Exploration Introduction from Mike Hawes VP at Lockheed Martin Orion Program Manager 7–7:15 AM

Session VIII

7:15-10 AM

GN&C Advances to Enable New Frontiers in Crewed Spaceflight

NASA and its commercial and international partners strive to bring astronauts to new Lunar, asteroid and Martian destinations, increasingly new and innovative GN&C technologies will be required to transport and deliver crews and return them safely to the Earth. Many new approaches are already in the final stages of development on the Orion and Space Launch System (SLS) programs, and yet further advances will be necessary to take the next steps to reach Mars in the coming decades. This session explores key advancements in automation, guidance, navigation and Fault Detection/Isolation (FDI) technologies which will ultimately enable human exploration onto lunar bases and beyond.

National Chairpersons

Tim Straube, NASA <u>timothy.m.straube@nasa.gov</u> Mike Hawes, Lockheed Martin <u>michael.w.hawes@lmco.com</u>

Local Chairpersons

Ellis King, Draper eking@draper.com

Jastesh Sud, Lockheed Martin jastesh.sud@lmco.com

18-081	RAON: Revolution in Autonomous Orbital Navigation R. Bhatia, D. Geller (Utah State University)
18-082	Exploring the Limits of High
	Altitude GPS for Future Lunar
	Missions
	B. Ashman, J. Parker (NASA
	Goddard), F. Bauer (The
	Aerospace Corp), M. Esswein
	(Virginia Polytechnic Institute)
18-083	Deep Space Autonomous
	Navigation Options for Future
	NASA Crewed Missions
	S. Steffes, G. Barton, S. Bhatt, M.
	Fritz, E. King (Charles Stark
	Draper Laboratory, Inc), C.
	D'Souza, D. Woffinden
	(NASA/JSC)

18-084	Orion's Powered Flight Guidance Burn Options for near term Exploration Missions T. Fill (Charles Stark Draper Laboratory, Inc), J. Goodman (Odyssey Space Research), S. Robinson (NASA/JSC)
18-085	Orion EM-1 FDIR Architecture H. Mamich (Lockheed Martin)
18-086	In-Flight Flight Software Reconfiguration for Orbit Burns D. Dionne (Charles Stark Draper
18-087	Orion Burn Automation Response to Failures R. Odegard (Charles Stark Draper Laboratory, Inc), K. Pohlkamp, C. Barrett, D. Dannemiller (NASA Johnson),
18-088	J. Sud (Lockheed Martin) A Generic Approach for Optimal BangOff-Bang Spacecraft Maneuvers E. Taheris, J. Junkins (Texas A&M University)

TUTORIAL SESSION 10:30 AM-3:30 PM

Beyond the Textbook: Program to Optimize Simulated Trajectories II (POST2) Introductory Tutorial (Rafael Lugo, AMA). Tutorial participation is limited to US-persons as defined by ITAR. Signups will be at the registration desk on check-in

Parallel Afternoon Sessions

Session IX

4-7 PM

Advances in GN&C Software

Successful GN&C system performance is often dependent on innovative software.

This session is open to all development processes and systems ranging from vehicle code used to operate the spacecraft system, ground software used for operations/analysis, or simulations/frameworks used to test, validate or develop GN&C systems. The intent is to include current best practices as well as challenges in future software development such as the inclusion of complex systems like artificial intelligence, machine learning, vision processing, and iterative numerical solvers.

National Chairperson

Mark Jackson, Blue Origin MJackson@blueorigin.com

Local Chairpersons

Scott Piggott, University of Colorado scott.piggott@lasp.colorado.edu Tomas Ryan, Ball Aerospace tryan@ball.com

18-091	Modular Software Architecture for Fully-Coupled Spacecraft Simulations C. Allard, M. Ramos, P. Kenneally, H. Schaub, S. Piggott (University of Colorado)
18-092	A performance Analysis of On-orbit Numerical Propagators S. Shuster, D. Geller (Utah State University)
	T. Smith (Space Dynamics Lab)
18-093	Flexible Basilisk Astrodynamics
	Visualization Software Using the Unity
	Rendering Engine
	H. Schaub, J. Wood, M. Cols Margenet, P. Kenneally (University of Colorado)
18-094	Software Simulator for Heterogeneous
	Spacecraft and Mission Components
	M. Cols-Margenet, P. Kenneally, H.
	Schaub, S. Piggott (University of Colorado)
18-095	Optimal Multi-Variable Multi-Constraint
	Spacecraft GN&C Performance
	D Woffinder (ISC) & Phatt D
	Kirkpatrick

18-096	Fast Spacecraft Solar Radiation Pressure Modeling by Ray-Tracing on Graphic Processing Unit P. Kenneally, H. Schaub (University of Colorado)
18-097	Spacecraft articulation Characterization Using Monocular Computer Vision D. Curtis, R. Cobb (AFIT)
18-098	New Methodology for Wind Modeling for Launcher Application M. Ganet-Schoeller (Ariane Group), V. Feuillard

Session X 4–7 PM Advances in GN&C Hardware

Many programs depend on heritage, but the future is advanced by those willing to design and implement new and novel architectures and technologies to solve the GN&C problems. This session is open to papers with topics concerning GN&C hardware ranging from theoretical formulations to innovative systems and intelligent sensors that will advance the state of the art, reduce the cost of applications, and speed the convergence to hardware, numerical, or design trade solutions.

18-101	A new domestic source for high performance star trackers : The Ball CT-2020
	E. Tchilian, T. Ebben, K. Miller (Ball
18-102	High Performance Reaction
	Wheels
	E. Stromswold, J. Krebs, B.
	Sullivan, S. Fox (Cayuga
	Astronautics)
18-103	Attitude Control System
	Complexity Reduction via
	Tailored Viscoelastic Damping
	Co-Designs
	Lin, D. Herber, Vedant, Y. H. Lee, A. Ghosh, R. Ewoldt, J. T. Allison
	Champaign)

18-104	Hydra Star Tracker for JUICE mission
	B. Gelin, G. Montay, Y. Henriquel, J. F. Bouvry (SODERN), P. Regnier
	(Airbus Defence & Space),
	D. Gherardi (ESA)
18-105	Rate Measurement Unit for
	Attitude Determination and
	Control Subsystem
	J. Beitia (InnaLabs), S. Kowaltschek
	(ESA)
18-106	BCT Advancing GN&C Hardware with the RW4 & RW8
	M. Carton, B. Peters, C. Messick.
	S. Steg. M. Baumgart, D. Hegel, S.
	Schneider (Blue Canvon
	Technologies)
18-107	ASTRO-XP High Accuracy Star
	Tracker
	U. Schmidt, B. Pradarutti (Jena-
	Optronik)
18-108	Atom Interferometry: Lockheed
	Martin Systems Development
	V. Benischek, H. Rice, L. Sczaniecki
	(Lockheed Martin)

TUESDAY, FEBRUARY 6th

Parallel Morning Sessions

Science Weather Enabled Introduction from Mike Gazarik, VP of Engineering at Ball Aerospace 7–7:30 AM

Session XI

7:30-10 AM

Science Weather Enabled

This session looks at the scientific results that GN&C has helped deliver. From exoplanet detections to Martian habitability to studying on our own planet, G&C engineering has played a significant role in enabling some of the most exciting scientific discoveries of our generation. These findings not only add to the body of scientific knowledge of our world and worlds beyond, they light the public's imagination and inspire tomorrow's scientists and engineers. National Chairperson Bill Frazier, NASA/JPL william.e.frazier@jpl.nasa.gov

Local Chairpersons

Heidi Hallowell, Ball Aerospace hhallowe@ball.com

Tim Bevacqua, Lockheed Martin timothy.bevacqua@lmco.com

18-111 On-Orbit Verification of GMI Instrument Spin Balance Stability Performance to Enable Essential Weat G. Ashton, L. Ayari, M. Kubitschek, S. Johnston, D. Debevec, D. Newell (Ball Aerospace), J. Pellicciot (NASA GSFC) 18-112 **GOES-16 ABI On-Orbit INR Tuning** and Performance D. Gall, V. Virgilio, R. Forkert, J. Van Naarden, P. Griffith (Harris Corporation) 18-113 Imaging X-Ray Polarimetry Explorer Mission Attitude Determination and **Control Concept** J. Bladt, W. Deininger, W. Kalinowski, M. Boysen, K. Bygott, J. Ferguson, L. Guy, C. Pentz, H. Phan, J. Wedmore (Ball Aerospace) 18-114 Optical Autocovariance Wind Lidar for Guidance, Navigation, and Control S. Tucker (Ball Aerospace) 18-115 Preliminary Saturn Atmospheric Density Results from Cassini's Final Plunae D. Boone, M. Wong, J. Bellerose, D. Roth (JPL/Caltech) 18-116 JPSS-1 - Building the Nation\'s Next-Generation Operational Polarorbiting Weather Satellite S. Asbury (Ball Aerospace)

 18-117 Novel Spacecraft Recovery, Guidance, and Control to Enable Kepler Science Mission Continuation
K. McCalmont-Everton, D. Putnam, D. Wiemer, K.A. Larson, C.A. Peterson, S.E. Ross (Ball Aerospace)

Session XII

7–10 AM

Pioneers of GN&C and Astrodynamics

This session will offer reflections on the careers and contributions of scientists and engineers who pioneered notable technical solutions for our aerospace community.

National Chairperson

Neil Dennehy, Goddard Space Flight Center cornelius.j.dennehy@nasa.gov

Local Chairperson

James McQuerry, Ball Aerospace (Retired) mcquerrydj@comcast.net

18-121	How Doc Draper Became the Father of Inertial Guidance Phil Hattis (Draper)
18-122	Henry Hoffman: NASA's Satellite
	J. O'Donnell, C. Dennehv (GSFC)
18-123	Astrodynamics Pioneer: Robert
	Farguhar
	K. Howell (Purdue)
18-124	Brad Parkinson: Father of GPS
	F. Bauer (FBauer Aerospace
	Consulting Services)
18-125	Pioneers of GN&C: L. S. Pontryagin
	M. Ross (NPS)
18-126	Nguyen Xuan Vinh – A Life in
	Hypersonic Flight
	A. Wolf (JPL)
18-127	Innovation Experiences From
	Vanguard, Explorer 1, Sidewinder,
	and NOTSNIK
	J. Goodman (Odyssey)

TUTORIAL SESSION 10:30 AM-12:30 PM

Beyond the Textbook: Nav Filter Best Practices

Speaker: Russell Carpenter (GSFC) Chris D'Souza (NASA/JSC)

TUTORIAL SESSION

1–3 PM

Beyond the Textbook: Applying Missile Intercept GN&C Solutions to the Problem of Asteroid Deflection for Planetary Defense Speakers: Nahum Melamed, Damian Toohey (The Aerospace Corp.)

Parallel Afternoon Sessions

Session XIII

4–7 PM

Space Launch System (SLS) Navigation

NASA's Space Launch System (SLS) represents a new era in space exploration for the United States. With the ability to implement increasingly more powerful launch configurations for both crew and cargo, SLS will help transport human and robotic missions to the moon, Mars, and beyond. This session will explore the navigation solutions required for mission success of this next generation space vehicle and its missions.

National Chairpersons

Evan Anzalone, MSFC evan.j.anzalone@nasa.gov Ted Oliver, MSFC ted.e.oliver@nasa.gov

Local Chairpersons Heidi Hallowell, Ball Aerospace <u>hhallowe@ball.com</u> John Reed, United Launch Alliance john.g.reed@ulalaunch.com

40 404	
10-131	SLS Navigation Model-Based
	Design Approach
	T. E. Oliver, E. Anzalone, K.
	Geohagan (MSFC), W. Bernard,
	T Park (MSEC/Dynamic
	Concents)
18-132	6DOE Testing of the LS Inertial
10-102	boor resulty of the LS mertial
	Navigation Unit
	K. Geohagan (MSFC), W.
	Bernard (MSFC/Dynamic
	Concepts), T. E. Oliver, J. Leggett
	(MSFC), D. Strickland
	(MSEC/CRM Solutions, Inc.)
18-133	Sensor Data Quality and
	Angular Pate Down Selection
	Algorithms on SLS EM 4
	T. Park (MSFC/Dynamic
	Concepts), A. Smith, I. E. Oliver
	(MSFC)
18-134	Optimization of Second Fault
	Detection Thresholds to
	Maximize Mission POS
	E Anzalone (MSEC)
18-135	SI S Block 1-B and Exploration
	Upper Stage Navigation System
	Design
	I. E. Oliver (MSFC) / I. Park
	(MSFC/Dynamic Concepts), A.
	Smith, E. Anzalone, W. Bernard
	(MSFC/Dynamic Concepts),
	D. Strickland (MSFC/CRM
	Solutions, Inc.), K. Geohagan
	(MSEC) M Green (MSEC/Jacobs
	Engineering) L leggett (MSEC)
10 126	DEC Enhancement for EM4 and
10-150	PEG Enhancement for Ewit and
	EM2+ MISSIONS
	P. Von der Porten, N. Ahmad
	(MSFC), M. Hawkins
	(MSFC/Jacobs Engineering)
18-137	Assessment and Verification of
	SLS Block 1-B Exploration
	Upper Stage State and Stage
	Dienocal Porformanco
	S. Pallick, T. E. Oliver (NISEC)

Advances in RPOD

This session explores the state of the art technologies that enable rendezvous, proximity operations and docking with manmade or natural targets (cooperative or non-cooperative). Precise optical range sensors such as LIDARs that provide in-situ measurements coupled with modern algorithms are key to robust and optimal planning of autonomous operations.

National Chairpersons

Miguel San Martin, JPL alejandro.m.sanmartin@jpl.nasa.gov

David Dannemiller, JSC david.p.dannemiller@nasa.gov

Local Chairpersons

Jastesh Sud, Lockheed Martin jastesh.sud@lmco.com

Larry Germann, Left Hand Design Corp germannl@lefthand.com

18-141	Advanced State Estimation For Orion Orbital Rendezvous W. Pisano (Infinite Horizon Co), P. Good (LMSSC)
18-142	Re-Evaluating Orion's Relative Navigation Filter Design for NASA's Future Exploration
	D. Woffinden (NASA/JSC), K. Tuggle (U. Texas), C. D'Souza (NASA/JSC), R. Zanetti (U. Texas)
18-143	Retro-Reflector Pattern Design and Identification for Orion Rendezvous, Proximity Operations, and Docking S. Robinson (NASA/JSC), C. Ertl (Rensselaer Polytechnic Institute), J. Christian (Rensselaer Polytechnic Institute)

18-144	Restore-L: Advanced In-Space Robotic Servicing Mission Enabled by a 3D Flash Lidar VNS R. Rohrschneider, Lutgring (Ball
	Aerospace)
18-145	The Natural Feature Tracking
	and LIDAR Hybrid Approach for
	OSIRIS-REx Sample Collection
	R. Olds (LMSSC), C. Miller
	(LMSSC), M. Skeen (LMSSC), D.
	Lorenz (NASA/GSFC), K. Berry
	(NASA/GSFC)
18-146	On a General Formulation of
	Relative Motion and Burn
	Targeting for Non-Circular
	Rendezvous
	M. Wilkinson (SGT, Inc),
	D. Dannemiller (NASA/JSC)
18-147	Sampling-Based Receding
	Horizon Guidance for the Safe
	Inspection of a Tumbling
	Spacecraft
	F. Capolupo (Airbus), S. Mast (TU
40.440	Delft)
18-148	Optimal Maneuvers for Safe
	RPO Using Relative Orbital
	Elements and Sequential
	Convex Programming
	N. Ortolano (Utah State), D.
	Geller (Utah State), A. Avery
	(Space Dynamics Lab)

WEDNESDAY, FEBRUARY 7th

Session XIV

4–7 PM

Recent Experiences

This session focuses on recent experiences in spaceflight GN&C, providing a forum to share insights gained through successes and failures. Discussions typically include GN&C experiences ranging from Earth orbiters to interplanetary spacecraft.

This session is a traditional part of the conference and has shown to be most interesting and informative.

National Chairpersons Bill Frazier, NASA JPL William.e.frazier@jpl.nasa.gov

Neil Dennehy, NASA-GSFC cornelius.j.dennehy@nasa.gov

Local Chairpersons Alex May, Lockheed Martin alexander.j.may@lmco.com

Brian Kirby, University of Colorado/LASP Brian.Kirby@lasp.colorado.edu

18-151	Flying Cassini Through the Grand Finale Orbits: Prediction VS. Reality M. Vaquero, Y. Hahn, S. Hernandez, F. Laipert, P. Valerino, S. Wagner, M. Wong, D. Roth (NASA/JPL)
18-152	Cassini Orbit Determination
	Operations through the final
	Titan flybys and the mission
	Grand Finale
	J. Bellerose, D. Roth, D. Boone,
	Z. Tarzi, K. Criddle, R. Ionasescu
	(JPL / Caltech)
18-153	The Unexpected Root Cause
	Conclusions of Reaction Wheel
	Failures on Kepler and FUSE
	B. Bialke (Lochridge Farm LLC),
	E. Hansell (United Technologies Aerospace Systems)
18-154	ESA's Recent Experience with
	Reaction Wheel Performance
	F. Liebold, R. Seiler, T. Haefner,
	D. Bojiloff, J. Demming
	(ESA/ESTEC)

18-155	SEXTANT X-ray Pulsar Navigation Demonstration: On- Orbit Calibration and Preliminary Results J. Mitchell, M. Hassouneh, L. Winternitz, S. Price, W. Yu, S. Semper (NASA-GSFC), P. Ray (NRL), K. Wood (Praxis Inc.), Z. Arzoumanian, K. Gendreau (NASA-GSFC)
18-157	Aerodynamic Torqueing
	Quadruples Fuel-Life of the
	MAVEN Mars Orbiter
	W. Pisano (Infinite Horizon Co),
	M. Johnson (Lockheed Martin)
18-158	MosaicGPS Receiver in
	Geostationary Orbit – On Orbit
	Performance Analysis
	M. Hartrampf (Airbus), E. Gottzein (University Stuttgart), P. Krauss (Airbus)

NOTES

2018 Planning Committee

John Abrams Lee Barker John Bendle Tim Bevacqua Jim Chapel David Chart Amy Delay Michael Drews Lis Garrett Larry Germann Ian Gravseth Ellis King Brian Kirby Dan Kubitschek Alex May Chris McLean James McQuerry Shawn McQuerry Kyle Miller Carolyn O'Brien Michael Osborne Jeff Parker Nick Patzer Scott Piggott John Reed Reuben Rohrschneider Charlie Schira Jim Russell David Shoemaker Meredith Stephens Jastesh Sud Cheryl Walker

Analytical Mechanics Lockheed Martin Ball Aerospace Left Hand Design Ball Aerospace Draper LASP LASP Lockheed Martin Ball Aerospace Ball Aerospace (Ret) Lockheed Martin **Ball Aerospace** Lockheed Martin (Ret) Lockheed Martin CU Boulder LASP LASP ULA Ball Aerospace PlanetiQ Lockheed Martin Lockheed Martin Ball Aerospace Lockheed Martin Lockheed Martin

