PROGRAM

44th ANNUAL AAS GUIDANCE, NAVIGATION & CONTROL CONFERENCE

February 4th to February 9th, 2022
Conference Location

BEAVER RUN
CONFERENCE CENTER
Breckenridge, Colorado

Room check-in at the Beaver Run Resort front desk 4:00 PM daily
Conference Registration
Friday 5:00 to 8:00 PM
Daily 6:30 to 10:00 AM and 4:00 to 6:00 PM

Registration Questions
Michelle Barath 303-887-7724
Amy Delay 303-731-9876

44th Annual AAS Guidance, Navigation & Control Conference Chairperson
Matt Sandnas
SEAKR Engineering, LLC
602-284-7341
matt.sandnas@seakr.com

Wi-Fi Access
Select “Beaver Run Meeting” wireless network.
Open a browser window
Enter voucher code: AAS2022

Conference Website
https://aas-rocky-mountain-section.org/

Online Program and Pre-print Paper Access read-only
2022 AAS - Rocky Mountain GN&C Conference xcdsystem.com

QR Code for Online Program
Conference Schedule Overview

Friday February 4th
- Conference Registration: 5 – 8 pm
- Welcome Reception: 6 – 9 pm

Saturday February 5th
- Breakfast: 6:15 – 7 am
- Morning Session: 7 – 10 am
- Tutorial: 10 am - 11:30 am
- NASA Astronaut for Children: 4 – 5 pm
- Technical Exhibits: 5 – 8 pm

Sunday February 6th
- Breakfast: 6:15 – 7:00 am
- Morning Session: 7 – 10:30 am
- Poster Session Break: 8:30 – 9 am
- Afternoon Session: 4 – 7 pm
- Casino Night: 7:30 pm

Monday February 7th
- Breakfast: 6:15 – 7:00 am
- Morning Session: 7 – 10:30 am
- Poster Session Break: 8:30 – 9 am
- Tutorial (w/ break for lunch): 10:30 am – 3 pm
- Afternoon Session: 4 – 7 pm
- Diversity, Equity, and Inclusion (DEI) Event: 7:30 - 8:30 pm

Tuesday February 8th
- Breakfast: 6:15 – 7:00 am
- Morning Session: 7 – 10:30 am
- Poster Session Break: 8:30 – 9 am
- Tutorial (w/ break for lunch): 10:30 am - 3 pm
- Afternoon Session: 4 – 7 pm

Wednesday February 9th
- Breakfast: 6:15 – 7 am
- Morning Session: 7 – 10:30 am
SATURDAY, FEBRUARY 5TH
7AM CONFERENCE OPENING

STUDENT INNOVATIONS IN GN&C
Session 01 Saturday 07:00 - 10:00 AM

This session embraces the wealth of research and innovative projects related to spacecraft GN&C being accomplished in the university setting. Papers in this session address hardware/software research as well as component, system or simulation advances. Papers submitted must have a student as the primary author and presenter. Papers will be adjudicated based on level of innovation, complexity of problem solved, perceived technical readiness level, applicability and fieldability to near-term systems, clarity of written and verbal delivery, number of completed years of schooling and adherence to delivery schedule. The session will be limited to 8 papers with the top 3 papers receiving monetary awards.

National Chairpersons
David Geller, Utah State University
david.geller@usu.edu
Luke Sauter, USAF/DFAS
luke.sauter@usafa.edu

Local Chairpersons
David Chart, Sierra Nevada Corp
david.chart@sncorp.com
Ian Gravseth, Ball Aerospace
ian.Gravseth@ballaerospace.com
Tutorial

Real-Time Testing & Hardware-in-the-Loop with MATLAB/Simulink

10:00am-11:30am

This session will demonstrate the use of real-time simulation for test and evaluation of GN&C systems. Hardware-in-the-loop is one of the most realistic testing techniques prior to deployment, which can be done at the system or subcomponent level. We will present an approach for performing real-time tests directly from models in Simulink with Simulink Real-Time, and connect these tests to hardware for realistic functional testing of GN&C.

Special Event for Children of Conference Attendees at 4 PM

Imperial Ballroom

NASA Astronaut, Steven Lindsey

This presentation will inspire our next generation of engineers by offering kids the opportunity to interact with an astronaut who flew three STS missions!
Saturday, February 5th

TECHNICAL EXHIBITS
Saturday 5:00 PM – 7:00 PM

The Technical Exhibits Session is a unique opportunity to observe displays and demonstrations of state-of-the-art hardware, design and analysis tools, and services applicable to advancement of guidance, navigation, and control technology. The latest commercial tools for GN&C simulations, analysis, and graphical displays are demonstrated in a hands-on interactive environment, and include lessons learned and undocumented features. Associated papers not presented in other sessions are also provided and can be discussed with the author. Come enjoy an excellent complimentary buffet and interact with the technical representatives and authors. This session takes place in a social setting and family members are welcome!

Local Chairpersons
Graeme Ramsey, Lockheed Martin Space
graeme.d.ramsey@lmco.com
Andrew Riskus, Ball Aerospace
andrew.riskus@ballaerospace.com

Exhibitors

Advanced Space
Ball Aerospace
General Atomics
Jena-Optronik GmbH
Lockheed Martin
MathWorks
Mclaurin Aerospace
Moog Broad Reach
MSAC – Un. of Illinois
NanoAvionics
NewSpace Systems
Redwire
SEAKR
Sierra Space
Sodern
Space Research at LASR Lab, Texas A&M
Space Dynamics Laboratory: Utah St
In recent years, the exploration and habitation of both the Lunar surface and Mars has become popularized in the commercial and private aerospace communities. With the Moon as the closest celestial body, and Mars as the closest and most hospitable planet near Earth, they are the most obvious next steps in human space exploration. Exploring both bodies poses a unique set of challenges in navigation, entry into a highly variable atmosphere, radiation resistance, and autonomous exploration. This session will explore the difficulties present in exploring the Moon and Mars and the innovative GN&C technologies and spacecraft operations that will aid in the manned and unmanned exploration of these bodies.

National Chairpersons
Robyn Woollands, University of Illinois at Urbana-Champaign
rmw@illinois.edu

Local Chairpersons
Cody Griffin, Sierra Nevada Corp
cody.griffin@sncorp.com
Hank Steadman, Lockheed Martin Space
harrison.steadman@lmco.com
ADVANCES IN GN&C HARDWARE
Session 03 Sunday 07:00 - 10:30 AM

Many programs depend on heritage, but the future is advanced by those willing to design and implement new and novel architectures, technologies, and algorithms to solve GN&C problems. This session is open to papers with topics ranging from theoretical formulations to innovative systems and intelligent sensors that will advance the state of the art, reduce the cost of applications, and speed the convergence to hardware, numerical, or design trade solutions.

National Chairpersons
Scott Cryan, NASA Johnson Space Center
scott.p.cryan@nasa.gov
Steeve Kowaltschek, European Space Agency
steeve.kowaltschek@esa.int

Local Chairpersons
Vasili Kamtsioras, Ball Aerospace
Vasili.Kamtsioras@ballaerospace.com
Jim Russell, Lockheed Martin Space
james.f.russell@lmco.com

- 7 -
As Guidance, Navigation and Control algorithms become increasingly autonomous, there is a natural progression towards incorporating cutting edge Artificial Intelligence, AI Machine Learning, ML technologies into the capabilities of today’s autonomous systems. When combined with established systems and control theory, AI and ML algorithms can harness the wealth of information available from data obtained by sensors and cyberphysical systems over time. This session will highlight research and demonstrations focused on the theory and methods of learning, control, and computational intelligence for GN&C systems. Some example topics for this session include novel applications of AI systems in traditional GN&C systems, performance comparisons between classical GN&C methods and ones that leverage AI or ML, and demonstrations of design and/or test of GN&C systems that utilize ML.

National Chairpersons
Christoffer Heckman, University of Colorado at Boulder
Christoffer.Heckman@colorado.edu

Local Chairpersons
Kip Gwin, Ball Aerospace
Kip.Gwin@ballaerospace.com
Morgan Yost, Lockheed Martin
morgan.yost@lmco.com
POSTER SESSION BREAKS

Sunday, Monday, & Tuesday
8:30-9:00 AM

Jim Russell, Lockheed Martin Space
james.f.russell@lmco.com

Graeme Ramsey, Lockheed Martin Space
graeme.d.ramsey@lmco.com

Focused poster session breaks will take place with unique posters displayed in the main foyer and attended Sunday, Monday and Tuesday, allowing the poster presenters to interact with the attendees one-on-one or in small groups. Each poster will be in a focused session one of these days. The posters not in the focus session each day will be on display in the hallway but not attended.
In the 1990’s the space community mantra was “Faster, Better, Cheaper, FBC”, but the common perception was one had to pick two out of the three attributes. Some FBC-based mission failures left the space community with a negative overall impression. With advances in computing, algorithms, technologies, and miniaturization, etc. is it a reasonable proposition to reconsider all three FBC mission attributes simultaneously? Space agencies including NASA, DoD, ESA and commercial space entities create roadmaps for their advanced GN&C technologies to systematically and strategically plan their investments. These agencies also perform parallel studies and analyses of technological readiness and programmatic feasibility as part of their formulation process for ambitious future mission concepts. This session presents the opportunity to step back and get a 30,000 ft view of GN&C’s future and to highlight the impact of advances in technology on new mission applications. Papers may include GN&C technology roadmaps, future roles and mission concepts, mission performance and operational drivers, new alternative business practices, and their inter-relationships.

National Chairpersons
Neil Dennehy, NASA Engineering & Safety Ctr
cornelius.j.dennehy@nasa.gov
Tooraj Kia, NASA Jet Propulsion Laboratory
tooraj.kia@jpl.nasa.gov

Local Chairpersons
Lee Barker, Lockheed Martin Corporation
lee.a.barker@lmco.com
Social Event

Casino Night

Sunday 7:30pm – 9:30pm
Breckenridge Ballroom

Brought to you by Casino Party USA
- 2x Roulette
- 2x Craps
- 3x Blackjack
- 3x Texas Hold’em
- 4x Slot Machines

Family Members of conference attendees are welcome! (However only conference attendees are eligible for prizes; family members cannot compile chips with attendee)

PRIZES! Chips will be exchanged for raffle tickets at the end of the event (9:30) with prize winners determined in the following 15 minutes. Prizes include a Breckenridge Ski Day Pass, AAS Pint Glasses, and more.

A light dinner buffet will be provided.
MONDAY, FEBRUARY 7th
TRIPLE MORNING SESSIONS

HUMAN SPACEFLIGHT/DEEP SPACE GATEWAY
Session 06 Monday 07:00 - 10:30 AM

NASA and its commercial and international partners strive to bring astronauts to new Lunar, asteroid and Martian destinations, increasingly new and innovative GN&C technologies will be required to transport and deliver crews and return them safely to the Earth. There is an increased urgency with the United States expressed goal to land the first woman and next man on the surface of the Moon by 2024. Orion and Space Launch System, SLS programs approach their final stages of development, new systems such as the Deep Space Gateway and Lunar Landers are being developed as the next steps to reach Mars in the coming decades. This session explores key advancements in automation, guidance, navigation and Fault Detection/Isolation, FDI technologies which will ultimately enable human exploration onto lunar bases and beyond.

National Chairpersons
David Dannemiller, NASA Johnson Space Center
david.p.dannemiller@nasa.gov

Local Chairpersons
Harvey Mamich, Lockheed Martin
harvey.r.mamich@lmco.com
Zach Yearout, Left Hand Design Corporation
zyearout@lefthand.com
Recent advances in navigation seek to push the boundaries of spacecraft navigation technology and address the shortcomings of current navigation systems. With the prospect of deploying large-scale constellations in the Earth orbit and the need for maintaining a safe orbital environment for all operators, new navigation techniques and robust architectures are required to complement the existing ground-based and GNSS systems. Other future lunar, interplanetary, and interstellar mission concepts require novel ways for collecting and processing observations from non-traditional sources. In this session, we will explore novel and advanced ground-based, space-based, and autonomous spacecraft navigation approaches. Of particular interest are methods for inter-satellite navigation and lost-in-space scenarios as well as new filtering techniques for processing optical observations, pulsar observations, and other deep space signals of opportunity. As the world continues to work towards expanded lunar exploration and long-term habitation, new techniques, algorithms, and technology are needed to enable in-situ autonomous exploration in cislunar space.

National Chairpersons
Evan Anzalone, NASA Marshall Space Flt Center
evan.j.anzalone@nasa.gov
Joel Parker, NASA Goddard Space Flight Center
joel.j.k.parker@nasa.gov

Local Chairpersons
Drew Engelmann, LASP
drew.engelmann@lasp.colorado.edu
Erin Griggs, Trusted Space, Inc.
erin.griggs@trustedspace.com
ADVANCES IN GN&C SOFTWARE
Session 08 Monday 07:00 - 10:30 AM

Successful GN&C system performance is often dependent on innovative software. This session is open to all development processes and systems ranging from vehicle code used to operate the spacecraft system, ground software used for operations/analysis, or simulations/frameworks used to test, validate or develop GN&C systems. The intent is to include current best practices as well as challenges in future software development such as the inclusion of complex systems like artificial intelligence, machine learning, vision processing, and iterative numerical solvers.

National Chairpersons
Paul Graven, Cateni
paul@graven.com

Local Chairpersons
Brian Bauer, Ball
Brian.Bauer@ballaerospace.com
Scott Piggott, Laboratory for Atmospheric and Space Physics
scott.Piggott@lasp.colorado.edu
Tutorial
Convex Optimization-Based Trajectory Generation

Part I 10:30am-12pm
Lunch Break 12-1pm
(lunch is not provided)
Part II 1-3pm

Reliable and efficient trajectory generation methods are a fundamental need for the envisioned autonomous aerospace vehicle systems of the future. The objective of this 3-hour tutorial is to provide an overview for practicing GN&C engineers of two major convex optimization-based trajectory generation methods. The first will be a lossless convexification algorithm (LCvx) for global optimality. The second will be sequential convex programming algorithm (SCvx) in which the solution to a sequence of convex problems converges to a feasible solution for coupled non-convex state/control constraints for local optimality.
MONDAY, FEBRUARY 7th
TRIPLE EVENING SESSIONS

ADVANCES IN PROPULSION
Session 09 Monday 4:00 - 7:00 PM

The development of advanced propulsion technologies is critical for enabling spacecraft platforms ranging from CubeSats to ambitious human and robotic space exploration missions. Innovative developments in chemical, electric, nuclear, and propellantless propulsion will provide higher performance and greater operability, enabling new approaches ranging from launch to interstellar travel. This session will highlight advanced propulsion technologies and enabling subsystems matured by NASA, DOD, industry, and academia.

National Chairpersons
Jeffrey Sheehy, NASA
jeffrey.sheehy@nasa.gov
Marcus Young, Air Force Research Laboratory
marcus.young.4@us.af.mil

Local Chairpersons
John Abrams, Analytical Mechanics Associates, AMA
j.abrams@ama-inc.com
Jeff Parker, Advanced Space, LLC
parker@advancedspace.com
Entry, descent, and landing technologies enable surface exploration of celestial bodies and the safe return of payloads to Earth. Recent advances in powered flight guidance and in atmospheric entry systems have improved landed mass capability to Mars, and has made the reuse of launch vehicle first stages commonplace on Earth. Continued advancements through the collaboration of government, industry and academia will enable even more ambitious capabilities and missions in the future. This session provides a venue for discussing advanced hypersonic entry vehicles, coupled with guidance, navigation and control technologies for powered and unpowered descent and landing systems. Topics include precision navigation and targeting, novel guidance and control methodologies, hazard avoidance, and controlled landings.

National Chairpersons
Henry Cordova, NASA Johnson Space Center
henry.s.cordova@nasa.gov
Sam W. Thurman, California Institute of Technology
sam.w.thurman@jpl.nasa.gov

Local Chairpersons
Jim Chapel, Lockheed Martin Space
jim.d.chapel@lmco.com
Ernie Lagimoniere, Sierra Space
ernie.lagimoniere@sncorp.com
IMAGE PROCESSING FOR NAVIGATION
Session 11 Monday 4:00 - 07:00 PM

Image Processing, IP is a critical step in many GN&C and ADCS algorithms, including attitude determination from star cameras and optical navigation from imaging sensors. Applications occur in various mission phases including interplanetary cruise, planetary orbit, proximity operations, descent and landing, and surface operations. An image from a visible, IR, LIDAR, or similar sensor can offer a wealth of information about a space vehicle’s navigation state, but this information must be distilled into measurements that can be ingested by a navigation algorithm. Therefore, the success of algorithms which rely on image data depends on how effectively these algorithms perform IP---defined here as the process of extracting the salient pieces of information from an image in the presence of noise, clutter, and other real-world issues. This session is dedicated to papers that explore the relationship between IP algorithms and the broader problem of GN&C. Topics include IP algorithms; feedback/feedforward between IP and GN&C; hosting platforms/architectures between CPUs, FPGAs, GPUs and other processing units; challenges with on-board real-time IP; on-board rendering; testing, verification and validation of IP algorithms; and lessons learned from past experiences.

National Chairpersons
Nikolas Trawny, NASA/JPL
nikolas.trawny@jpl.nasa.gov

Local Chairpersons
Ellis King, Lockheed Martin Space
ellis.king@lmco.com
Michael Osborne, Lockheed Martin Space
michael.l.osborne@lmco.com
Social Event

Diversity, Equity, and Inclusion (DEI) Cocktail Hour

Monday 7:30pm – 8:30pm

Come join your GN&C colleagues for a networking and panel session. This event will focus on the future of the GN&C workforce and what is needed to develop a strong workforce, today and in the future. Audience questions are encouraged.

Heavy appetizers will be served.
In recent years, small satellites including NanoSats and CubeSats have seen greater use for a range of applications in government, commercial, and educational sectors. At the high end of this mass range, ESPA-class spacecraft are now trusted platforms for scientific and defense missions. These missions require advanced technology insertion, GN&C, on-board processing while advancing manufacturing practices to achieve higher production rates. Some key challenges related to increasing production volume include: supply-chain management, automated production and testing, and design for manufacturing approaches. This session is open to papers covering advanced technology insertion on small sats, e.g. propulsion, optical communications, proximity operations, drag sails, etc., advanced manufacturing practices, e.g. best practices for satellite production, automation and design for manufacturing. Papers on practical mission experience in these areas are welcomed.

National Chairpersons
Jason Everett, NASA Marshall Space Flight Center
jason.m.everett@nasa.gov
Scott Palo, University of Colorado at Boulder
palo@colorado.edu

Local Chairpersons
Bruce Rabalais, Blue Canyon Technology
brabalais@bluecanyontech.com
DeAnn Redlin Sanders, Blue Origin
deann.sanders@gmail.com
Recent years have seen an amazing array of planetary exploration missions to asteroids, comets, and other small solar system objects, with several new missions in various phases of development. This has led to the practical application of innovations in optical navigation, sensors, modeling, and autonomy that are essential to accomplish demanding mission objectives, such as characterizing the small body after arrival, operating in a micro-gravity environment, and in some cases navigating to the surface. This session solicits GN&C experiences, successes, lessons learned, and future challenges associated with the exploration of asteroids, comets, and other small bodies, and how these GN&C capabilities may be applied to other exploration applications.

National Chairpersons
Coralie Adam, KinetX, Inc.
coralie.adam@kinetx.com
Jay McMahon, CCAR, Colorado Center for Astrodynamics Research
jay.mcmahon@colorado.edu

Local Chairpersons
Dan Kubitschek, Univ of Colorado-LASP
daniel.kubitschek@lasp.colorado.edu
Alexander May, Lockheed Martin
alexander.j.may@lmco.com
AUTONOMOUS CONTROL OF MULTIPLE SPACECRAFT

Session 14 Tuesday 7:00 - 10:30 AM

Satellite constellations are nothing new, but the sizes, scales and configurations of modern Distributed Satellite Systems, DSS are reaching unprecedented levels of scope and complexity. These configurations include constellations, swarms and various fractionated architectures. Recent demonstrations of these DSS systems show that handling the planning, coordination and operations associated with large-scale constellations is a critical logistical problem that must be addressed for continued effective application of these systems. In addition to the logistical challenges, large and small multi-spacecraft systems must also work through operational complexities such as autonomy, formation flying, fractionation, docking, structural assembly, tethering, station keeping for sparse aperture configurations and on-orbit servicing and reconfiguration. Some key system and subsystem challenges for DSS include: formation control, rendezvous management, expanded autonomous control, on-orbit calibration, station keeping, space traffic management, and human-interfacing with the DSS. Any and all papers related to these topics are welcome.

National Chairpersons
Hanspeter Schaub, CCAR, Colorado Center for Astrodynamics Research
hanspeter.schaub@colorado.edu
Jekan Thangavelautham, University of Arizona
jekan@arizona.edu

Local Chairpersons
Kevin Goettsche, Ball Aerospace
kevin.goettsche@ballaerospace.com
Tom Knight, Sierra Nevada Corp
tom.knight@sncorp.com
Chris Pumford, Ball Aerospace
chris.pumford@ballaerospace.com
The adoption of machine learning and deep learning for AI based workflows in aerospace applications is increasing. In this session, through hands-on and code-along exercises, you will be introduced to a deep learning workflow in MATLAB that can be used for relative navigation, or other object detection or classification problems. The session will cover the full workflow from image pre-processing to deploying the deep learning algorithms on hardware.

Participants should bring their own laptops (chargers are also recommended) in order to participate in the hands-on exercises. Licenses to MATLAB Online for the session will be provided by MathWorks. We recommend installing the Chrome browser to ensure the best compatibility.
NASA and other space agencies have ambitious plans for new space-based observatories which will investigate long-standing astronomical mysteries, such as the force behind the universe’s expansion, dark energy, and the search for distant planets beyond our solar system. Scientists and engineers will closely collaborate on building these powerful observatories to accomplish "civilization-class science" goals. Providing high performance pointing control systems will be a fundamental challenge for GN&C engineers. This is especially true for those observatories hosting extremely sensitive optical sensor payloads with stringent requirements on allowable line-of-sight pointing / pointing stability / jitter errors and/or wavefront error. In this session examples of mission requiring high performance pointing missions with demanding GN&C engineering challenges will be introduced and described. Papers describing the process of precision pointing system analysis, modeling, simulation, ground testing, and in-flight testing are sought for presentation. Observatory architectural approaches for minimizing the impact of on-board disturbances, e.g., reaction wheels, instrument cryocoolers, appendage drive mechanisms, etc. on pointing/pointing stability/jitter are of prime interest. Modeling uncertainty and the ways in which ground testing can reduce that uncertainty are topics of interest as well, as are active or passive disturbance isolation systems.
Tuesday, February 8th

National Chairpersons
Oscar Alvarez-Salazar, NASA Jet Propulsion Lab
oscar.s.alvarez-salazar@jpl.nasa.gov
Neil Dennehy, NASA Engineering and Safety Ctr
cornelius.j.dennehy@nasa.gov

Local Chairpersons
Lee Barker, Lockheed Martin Corporation
lee.a.barker@lmco.com
Drew Engelmann, LASP
drew.engelmann@lasp.colorado.edu
NASA’s Origins, Spectral Interpretation, Resource Identification, and Security–Regolith Explorer, OSIRIS-REx mission successfully collected a sample of regolith from near-Earth asteroid Bennu in October 2020. In the year leading up to the dramatic sample collection, the spacecraft completed detailed reconnaissance passes of the final four candidate TAG sites, conducting flybys within 200 meters of the surface, and conducted a series of rehearsals for the sample collection event. Following successful stow of the sample canister in the sample return capsule, the spacecraft conducted a final flyby of Bennu to survey the sample collection site in April 2021, and performed a maneuver to depart Bennu and start the return to Earth in May. This session will include flight performance results leading up to and following the successful sample collection, and other analysis in preparation for returning the sample safely to Earth.

National Chairpersons
Dolan Highsmith, The Aerospace Corporation
Dolan.E.Highsmith@aero.org
Michael Moreau, NASA Goddard Space Flight Center
michael.c.moreau@nasa.gov

Local Chairpersons
Dan Kubitschek, Univ of Colorado-LASP
daniel.kubitschek@lasp.colorado.edu
Alexander May, Lockheed Martin
alexander.j.may@lmco.com
AUTONOMOUS RPOD, SERVICING, COLLISION AVOIDANCE

Session 17 Tuesday 4:00 - 07:00 PM

With each passing year, the utilization of space and complexity of systems continues to grow at an ever-increasing rate. Autonomous rendezvous, proximity operations, and docking are key enablers to supporting our key objectives such as maintaining the International Space Station or placing boots on the lunar surface again. Additionally, there is continued interest in the commercial servicing of existing spacecraft and removing orbital debris. This session explores all aspects of enabling technologies for Navigation, Guidance and Control, Computer Vision, Robotics, and Safety of Flight to support this class of missions.

National Chairpersons
Jack Brazzel, NASA Johnson Space Center
jack.brazzel@nasa.gov
Islam Hussein, Trusted Space, Inc.
Islam.Hussein@trustedspace.com

Local Chairpersons
Ellis King, Lockheed Martin Space
ellis.king@lmco.com
Melissa Sampson, Ball Aerospace
melissa.sampson@ballaerospace.com
RECENT EXPERIENCES

Session 18 Wednesday 7:00 - 10:00 AM

This session focuses on recent experiences in spaceflight GN&C, providing a forum to share insights gained through successes and failures. Discussions typically include GN&C experiences ranging from Earth orbiters to interplanetary spacecraft. This session is a traditional part of the conference and has shown to be most interesting and informative.

National Chairpersons
Kurt Cavalieri, Sandia National Laboratories
kauresc@sandia.gov
David Dannemiller, NASA Johnson Space Ctr
david.p.dannemiller@nasa.gov

William E. Frazier, Jet Propulsion Laboratory
william.e.frazier@jpl.nasa.gov

Local Chairpersons
Heidi Hallowell, Ball Aerospace
Heidi.Hallowell@ballaerospace.com
Jastesh Sud, Lockheed Martin
jastesh.sud@lmco.com
NOTES:
2022 Planning Committee:

Amy Delay
Alex May
Alex May
Andrew Riskus
Brian Bauer
Bruce Rabalais
Cheryl Walker
Christine Pumford
Cody Griffin
Dan Kubitschek
David Chart
Dav Swanson
DeAnn Redlin Sanders
Drew Engelmann
Ellis King
Erin Griggs
Ernie Lagimoniere
Graeme Ramsey
Hank Steadman
Harvey Mamich
Heidi Hallowell
Ian Gravseth
Jastesh Sud
Jeffrey Parker
Jim Chapel
Jim Russell
John Abrams
Kevin Goettsche
Kip Gwin
Kyle Miller
Lee Barker
Matt Sandnas
Melissa Sampson
Meredith Stephens
Michael Drews
Michael Osborne
Michelle Barath
Morgan Yost
Scott Piggott
Shawn McQuerry
Tom Knight
Vasili Kamtsioras
Zach Yearout

Lockheed Martin Space
Lockheed Martin Space
Lockheed Martin Space
Ball Aerospace
Ball Aerospace
Blue Canyon Technology
Parsons
Ball Aerospace
Sierra Nevada Corp
Univ of Colorado-LASP
Sierra Nevada Corp
Raytheon
Univ of Colorado-LASP
Lockheed Martin Space
Trusted Space
Sierra Nevada Corp
Lockheed Martin Space
Lockheed Martin Space
Lockheed Martin Space
Ball Aerospace
Lockheed Martin Space
Lockheed Martin Space
Advanced Space
Lockheed Martin Space
Lockheed Martin Space
Analytical Mechanics Assoc. Inc.
Ball Aerospace
Ball Aerospace
Ball Aerospace
Lockheed Martin Space
SEAKR Engineering
Ball Aerospace
Lockheed Martin Space
Lockheed Martin Space
Lockheed Martin Space
Univ of Colorado-LASP
Lockheed Martin Space
Sierra Nevada Corp
Ball Aerospace
Left Hand Design Corporation
Please join us next year for the 2023 AAS GN&C Conference